17 research outputs found

    Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    Get PDF
    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Collision Detection for UAVs Based on GeoSOT-3D Grids

    No full text
    The increasing number of unmanned aerial vehicles (UAVs) has led to challenges related to solving the collision problem to ensure air traffic safety. The traditional approaches employed for collision detection suffer from two main drawbacks: first, the computational burden of a pairwise calculation increases exponentially with an increasing number of spatial entities; second, existing grid-based approaches are unsuitable for complicated scenarios with a large number of objects moving at high speeds. In the proposed model, we first identified UAVs and other spatial objects with GeoSOT-3D grids. Second, the nonrelational spatial database was initialized with a multitable strategy, and spatiotemporal data were inserted with the GeoSOT-3D grid codes as the primary key. Third, the collision detection procedure was transformed from a pairwise calculation to a multilevel query. Four simulation experiments were conducted to verify the feasibility and efficiency of the proposed collision detection model for UAVs in different environments. The results also indicated that 64 m GeoSOT-3D grids are the most suitable basic grid size, and the reduction in the time consumption compared with traditional methods reached approximately 50–80% in different scenarios

    Time-lapse changes of in vivo injured neuronal substructures in the central nervous system after low energy two-photon nanosurgery

    No full text
    There is currently very little research regarding the dynamics of the subcellular degenerative events that occur in the central nervous system in response to injury. To date, multi-photon excitation has been primarily used for imaging applications; however, it has been recently used to selectively disrupt neural structures in living animals. However, understanding the complicated processes and the essential underlying molecular pathways involved in these dynamic events is necessary for studying the underlying process that promotes neuronal regeneration. In this study, we introduced a novel method allowing in vivo use of low energy (less than 30 mW) two-photon nanosurgery to selectively disrupt individual dendrites, axons, and dendritic spines in the murine brain and spinal cord to accurately monitor the time-lapse changes in the injured neuronal structures. Individual axons, dendrites, and dendritic spines in the brain and spinal cord were successfully ablated and in vivo imaging revealed the time-lapse alterations in these structures in response to the two-photon nanosurgery induced lesion. The energy (less than 30 mW) used in this study was very low and caused no observable additional damage in the neuronal sub-structures that occur frequently, especially in dendritic spines, with current commonly used methods using high energy levels. In addition, our approach includes the option of monitoring the time-varying dynamics to control the degree of lesion. The method presented here may be used to provide new insight into the growth of axons and dendrites in response to acute injury

    A Low-Altitude Flight Conflict Detection Algorithm Based on a Multilevel Grid Spatiotemporal Index

    No full text
    Flight conflict detection is fundamental to flight dispatch, trajectory planning, and flight safety control. An ever-increasing aircraft population and higher speeds, particularly the emergence of hypersonic/supersonic aircrafts, are challenging the timeliness and accuracy of flight conflict detection. Traditional trajectory conflict detection algorithms rely on traversing multivariate equations of every two trajectories, in order to yield the conflict result and involve extensive computation and high algorithmic complexity; these algorithms are often unable to provide the flight conflict solutions required quickly enough. In this paper, we present a novel, low-altitude flight conflict detection algorithm, based on the multi-level grid spatiotemporal index, that transforms the traditional trajectory-traversing multivariate conflict computation into a grid conflict state query of distributed grid databases. Essentially, this is a method of exchanging "storage space" for "computational time". First, we build the spatiotemporal subdivision and encoding model based on the airspace. The model describes the geometries of the trajectories, low-altitude obstacles, or dangerous fields and identifies the grid with grid codes. Next, we design a database table structure of the grid and create a grid database. Finally, we establish a multilevel grid spatiotemporal index, design a query optimization scheme, and examine the flight conflict detection results from the grid database. Experimental verification confirms that the computation efficiency of our algorithm is one order of magnitude higher than those of traditional methods. Our algorithm can perform real-time (dynamic/static) conflict detection on both individual aircraft and aircraft flying in formation with more efficient trajectory planning and airspace utilization

    Clustering and Segmentation of Adhesive Pests in Apple Orchards Based on GMM-DC

    No full text
    The segmentation of individual pests is a prerequisite for pest feature extraction and identification. To address the issue of pest adhesion in the apple orchard pest identification process, this research proposed a pest adhesion image segmentation method based on Gaussian Mixture Model with Density and Curvature Weighting (GMM-DC). First, in the HSV color space, an image was desaturated by adjusting the hue and inverting to mitigate threshold crossing points. Subsequently, threshold segmentation and contour selection methods were used to separate the image background. Next, a shape factor was introduced to determine the regions and quantities of adhering pests, thereby determining the number of model clustering clusters. Then, point cloud reconstruction was performed based on the color and spatial distribution features of the pests. To construct the GMM-DC segmentation model, a spatial density (SD) and spatial curvature (SC) information function were designed and embedded in the GMM. Finally, experimental analysis was conducted on the collected apple orchard pest images. The results showed that GMM-DC achieved an average accurate segmentation rate of 95.75%, an average over-segmentation rate of 2.83%, and an average under-segmentation rate of 1.42%. These results significantly outperformed traditional image segmentation methods. In addition, the original and improved Mask R-CNN models were used as recognition models, and the mean Average Precision was used as the evaluation metric. Recognition experiments were conducted on pest images with and without the proposed method. The results show the mean Average Precision for pest images segmented with the proposed method as 92.43% and 96.75%. This indicates an improvement of 13.01% and 12.18% in average recognition accuracy, respectively. The experimental results demonstrate that this method provides a theoretical and methodological foundation for accurate pest identification in orchards
    corecore