4 research outputs found

    Genetically predicted causal effects of gut microbiota on spinal pain: a two-sample Mendelian randomization analysis

    Get PDF
    BackgroundObservational studies have hinted at a correlation between the gut microbiota and spinal pain (SP). However, the impact of the gut microbiota on SP remains inconclusive.MethodsIn this study, we employed a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between the gut microbiota and SP, encompassing neck pain (NP), thoracic spine pain (TSP), low back pain (LBP), and back pain (BP). The compiled gut microbiota data originated from a genome-wide association study (GWAS) conducted by the MiBioGen consortium (n = 18,340). Summary data for NP were sourced from the UK Biobank, TSP from the FinnGen Biobank, and LBP from both the UK Biobank and FinnGen Biobank. Summary data for BP were obtained from the UK Biobank. The primary analytical approach for assessing causal relationships was the Inverse Variance Weighted (IVW) method, supplemented by various sensitivity analyses to ensure result robustness.ResultsThe IVW analysis unveiled 37 bacterial genera with a potential causal relationship to SP. After Benjamini-Hochberg corrected test, four bacterial genera emerged with a strong causal relationship to SP. Specifically, Oxalobacter (OR: 1.143, 95% CI 1.061–1.232, P = 0.0004) and Tyzzerella 3 (OR: 1.145, 95% CI 1.059–1.238, P = 0.0007) were identified as risk factors for LBP, while Ruminococcaceae UCG011 (OR: 0.859, 95% CI 0.791–0.932, P = 0.0003) was marked as a protective factor for LBP, and Olsenella (OR: 0.893, 95% CI 0.839–0.951, P = 0.0004) was recognized as a protective factor for low back pain or/and sciatica. No significant heterogeneity or horizontal pleiotropy was observed through alternative testing methods.ConclusionThis study establishes a causal relationship between the gut microbiota and SP, shedding light on the “gut-spine” axis. These findings offer novel perspectives for understanding the etiology of SP and provide a theoretical foundation for potential interventions targeting the gut microbiota to prevent and treat SP

    Spherical Binderless 4A/5A Zeolite Assemblies: Synthesis, Characterization, and Adsorbent Applications

    No full text
    Zeolite microspheres have been successfully applied in commercial-scale separators such as oxygen concentrators. However, further enhancement of their applications is hampered by the post-synthetic shaping process that formulates the zeolite powder into packing-sized spherical bodies with various binders leading to active site blockage and suboptimal performance. Herein, binderless zeolite microspheres with a tunable broad size range from 2 µm to 500 µm have been developed with high crystallinity, sphericity over 92%, monodispersity with a coefficient of variation (CV) less than 5%, and hierarchical pore architecture. Combining precursor impregnation and steam-assisted crystallization (SAC), mesoporous silica microspheres with a wide size range could be successfully transformed into zeolite. For preserved size and spherical morphology, a judicious selection of the synthesis conditions is crucial to ensure a pure phase, high crystallinity, and hierarchical architecture. For the sub-2-µm zeolite microsphere, low-temperature prolonged aging was important so as to suppress external zeolization that led to a large, single macroporous crystal. For the large 500 µm sphere, ultrasound pretreatment and vacuum impregnation were crucial and facilitated spatially uniform gel matrix dispersion and homogenous crystallization. The obtained zeolite 5A microspheres exhibited excellent air separation performance, while the 4A microspheres displayed ammonium removal capabilities. This work provides a general strategy to overcome the existing limitations in fabricating binder-free technical bodies of zeolites for various applications

    Gene association analysis to determine the causal relationship between immune cells and juvenile idiopathic arthritis

    No full text
    Abstract Background Juvenile idiopathic arthritis (JIA) is a type of chronic childhood arthritis with complex pathogenesis. Immunological studies have shown that JIA is an acquired self-inflammatory disease, involving a variety of immune cells, and it is also affected by genetic and environmental susceptibility. However, the precise causative relationship between the phenotype of immune cells and JIA remains unclear to date. The objective of our study is to approach this inquiry from a genetic perspective, employing a method of genetic association analysis to ascertain the causal relationship between immune phenotypes and the onset of JIA. Methods In this study, a two-sample Mendelian randomization (MR) analysis was used to select single nucleotide polymorphisms (SNPs) significantly associated with immune cells as instrumental variables to analyze the bidirectional causal relationship between 731 immune cells and JIA. There were four types of immune features (median fluorescence intensity (MFI), relative cellular (RC), absolute cellular (AC), and morphological parameters (MP)). Finally, the heterogeneity and horizontal reproducibility of the results were verified by sensitivity analysis, which ensured more robust results. Results We found that CD3 on CM CD8br was causally associated with JIA at the level of 0.05 significant difference (95% CI = 0.630 ~ 0.847, P = 3.33 × 10−5, PFDR = 0.024). At the significance level of 0.20, two immunophenotypes were causally associated with JIA, namely: HLA DR on CD14+ CD16- monocyte (95% CI = 0.633 ~ 0.884, P = 6.83 × 10–4, PFDR = 0.16) and HLA DR on CD14+ monocyte (95% CI = 0.627 ~ 0.882, P = 6.9 × 10−4, PFDR = 0.16). Conclusion Our study assessed the causal effect of immune cells on JIA from a genetic perspective. These findings emphasize the complex and important role of immune cells in the pathogenesis of JIA and lay a foundation for further study of the pathogenesis of JIA

    Bridging cell surface receptor with nuclear receptors in control of bile acid homeostasis

    No full text
    Bile acids (BAs) are traditionally considered as “physiological detergents” for emulsifying hydrophobic lipids and vitamins due to their amphipathic nature. But accumulating clinical and experimental evidence shows an association between disrupted BA homeostasis and various liver disease conditions including hepatitis infection, diabetes and cancer. Consequently, BA homeostasis regulation has become a field of heavy interest and investigation. After identification of the Farnesoid X Receptor (FXR) as an endogenous receptor for BAs, several nuclear receptors (SHP, HNF4α, and LRH-1) were also found to be important in regulation of BA homeostasis. Some post-translational modifications of these nuclear receptors have been demonstrated, but their physiological significance is still elusive. Gut secrets FGF15/19 that can activate hepatic FGFR4 and its downstream signaling cascade, leading to repressed hepatic BA biosynthesis. However, the link between the activated kinases and these nuclear receptors is not fully elucidated. Here, we review the recent literature on signal crosstalk in BA homeostasis
    corecore