708 research outputs found

    Triple crossing positivity bounds, mass dependence and cosmological scalars: Horndeski theory and DHOST

    Full text link
    Scalars are widely used in cosmology to model novel phenomena such as the late-time cosmic acceleration. These are effective field theories with highly nonlinear interactions, including Horndeski theory/generalized galileon and beyond. We use the latest fully crossing symmetric positivity bounds to constrain these cosmological EFTs. These positivity bounds, based on fundamental principles of quantum field theory such as causality and unitarity, are able to constrain the EFT coefficients both from above and below. We first map the mass dependence of the fully crossing symmetric bounds, and find that a nonzero mass generically enlarges the positivity regions. We show that fine-tunings in the EFT construction can significantly reduce the viable regions and sometimes can be precarious. Then, we apply the positivity bounds to several models in the Horndeski class and beyond, explicitly listing the ready-to-use bounds with the model parameters, and discuss the implications for these models. The new positivity bounds are found to severely constrain some of these models, in which positivity requires the mass to be parametrically close to the cutoff of the EFT, effectively ruling them out. The examples include massive galileon, the original beyond Horndeski model, and DHOST theory with unity speed of gravity and nearly constant Newton's coupling.Comment: 45 pages, 16 figures, 1 table. To appear in JCA

    Characterization of Family IV UDG from Aeropyrum pernix and Its Application in Hot-Start PCR by Family B DNA Polymerase

    Get PDF
    Recombinant uracil-DNA glycosylase (UDG) from Aeropyrum pernix (A. pernix) was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG) were studied using oligonucleotides carrying a deoxyuracil (dU) base. The optimal temperature range and pH value for dU removal by ApeUDG were 55–65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases

    Accurate Reconstruction of Molecular Phylogenies for Proteins Using Codon and Amino Acid Unified Sequence Alignments (CAUSA)

    Get PDF
    Based on molecular clock hypothesis, and neutral theory of molecular evolution, molecular phylogenies have been widely used for inferring evolutionary history of organisms and individual genes. Traditionally, alignments and phylogeny trees of proteins and their coding DNA sequences are constructed separately, thus often different conclusions were drawn. Here we present a new strategy for sequence alignment and phylogenetic tree reconstruction, codon and amino acid unified sequence alignment (CAUSA), which aligns DNA and protein sequences and draw phylogenetic trees in a unified manner. We demonstrated that CAUSA improves both the accuracy of multiple sequence alignments and phylogenetic trees by solving a variety of molecular evolutionary problems in virus, bacteria and mammals. Our results support the hypothesis that the molecular clock for proteins has two pointers existing separately in DNA and protein sequences. It is more accurate to read the molecular clock by combination (additive) of these two pointers, since the ticking rates of them are sometimes consistent, sometimes different. CAUSA software were released as Open Source under GNU/GPL license, and are downloadable free of charge from the website www.dnapluspro.com

    A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300

    Get PDF
    A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. col

    An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid

    Get PDF
    With the rapid deployment of distributed photovoltaic (PV) systems in residential buildings, peer-to-peer (P2P) energy trading in a community microgrid is highly desired since it enables flexible and economical energy transactions among neighboring prosumers. An efficient trading mechanism is pivotal for the successful and sustainable implementation of P2P energy trading in a community microgrid. This paper proposes a novel iterative uniform-price auction (IUPA) mechanism. Depending on the comparison between the aggregated energy supply and demand, the P2P market is divided into the seller’s market and the buyer’s market. The proposed auction mechanism is respectively implemented in the two types of markets in order to determine a uniform trading price and an efficient energy allocation. To maximize economic benefits, competitive prosumers iteratively adjust their bids based on their own private information and the issued market information until reaching a state of Nash equilibrium. This differs from the continuous double auction (CDA) in terms of bidding formats and prosumers’ trading strategies. Besides, the auction market self-adaption algorithm (AMSA) is designed for efficiently finding the equilibrium of the IUPA. Numerical studies demonstrate the effectiveness of the proposed mechanism in terms of finding fairer trading prices, saving total costs of the community, and promoting local transactions of excess PV energy

    Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities

    Get PDF
    Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5′ half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein–DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions

    Cofactor Requirement of HpyAV Restriction Endonuclease

    Get PDF
    BACKGROUND: Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. PRINCIPAL FINDINGS: We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg(++). The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. CONCLUSIONS/SIGNIFICANCE: Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms
    • …
    corecore