31 research outputs found

    Experimental observation of Dirac-like surface states and topological phase transition in Pb1−x_{1-x}Snx_xTe(111) films

    Full text link
    The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high quality Pb1−x_{1-x}Snx_xTe(111) films and investigated the TCI phase by in-situ angle-resolved photoemission spectroscopy. Pb1−x_{1-x}Snx_xTe(111) films undergo a topological phase transition from trivial insulator to TCI via increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type doping. In addition, a hybridization gap is opened in the surface states when the thickness of film is reduced to the two-dimensional limit. The work demonstrates an approach to manipulating the topological properties of TCI, which is of importance for future fundamental research and applications based on TCI

    Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2

    Full text link
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics and quantum computing devices. The mechanical exfoliation technique of micro-size TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large area and high quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature above 6 K, 2 times higher than that of mechanical exfoliated NbSe2 flakes. Simultaneously, the transport measurements at high magnetic fields reveal that the parallel characteristic field Bc// is at least 4.5 times higher than the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity when approaching the zero-temperature quantum critical point

    KFe_2Se_2 is the parent compound of K-doped iron selenide superconductors

    Get PDF
    We elucidate the existing controversies in the newly discovered K-doped iron selenide (KxFe2-ySe2-z) superconductors. The stoichiometric KFe2Se2 with \surd2\times\surd2 charge ordering was identified as the parent compound of KxFe2-ySe2-z superconductor using scanning tunneling microscopy and spectroscopy. The superconductivity is induced in KFe2Se2 by either Se vacancies or interacting with the anti-ferromagnetic K2Fe4Se5 compound. Totally four phases were found to exist in KxFe2-ySe2-z: parent compound KFe2Se2, superconducting KFe2Se2 with \surd2\times\surd5 charge ordering, superconducting KFe2Se2-z with Se vacancies and insulating K2Fe4Se5 with \surd5\times\surd5 Fe vacancy order. The phase separation takes place at the mesoscopic scale under standard molecular beam epitaxy condition
    corecore