2 research outputs found

    Molecular genotyping of sweet potato (Ipomoea batatas L. Lam) accessions using microsatellites

    Get PDF
    The experiment was conducted to ascertain the level of genetic diversity in sweet potato accessions using microsatellites. Thirty sweet potato accessions obtained from the International Potato Center (CIP), Kumasi, Ghana, Mozambique, and local germplasm of the National Root Crops Research Institute (NRCRI), Umudike, Abia State, Nigeria, as well as sweet potato vines from local farmers' fields in Jos, Plateau State, and Bauchi State, Nigeria, were analyzed for genetic diversity using five microsatellite markers. The results showed that the polymorphic SSR loci revealed diverse relationship among the sweet potato cultivars, which was grouped into four major clusters by unweighted pair group method analysis (UPGMA) method. Cluster analysis showed a Jaccard co-efficient ranging from 0.0 to 3.0 indicating high genetic diversity. The primers detected a total of 18 alleles and the number of alleles per locus was 4 for IBR-19, IBR-286, IBR-297 and 3 for IBR-16 and IBR-242 with an average of 3.67 alleles per locus. The polymorphic information content (PIC) of the markers varied from 0.35 to 0.72 with an average of 0.497. Marker IBR-19 revealed the highest PIC of 0.72, while marker IBR-297 had the lowest PIC of 0.35. Observed heterozygosity ranged from 0.32 to 0.89 with a mean of 0.675 across the five SSR loci. The results from the Analysis of molecular variance (AMOVA) which was used to quantify the diversity level and genetic relationship among the thirty sweet potato accessions indicated that a high diversity was mostly distributed within the populations for sweet potato accessions (75.12%) and (15.67%) among the populations

    High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    Get PDF
    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.Bill and Melinda Gates Foundation (BMGF) Grant OPPGD1493. University of Arizona. CGIAR Research Program on Roots, Tubers, and Bananas. Next Generation Cassava Breeding grant OPP1048542 from BMGF and the United Kingdom Department for International Development. BMGF grant OPPGD1016 to IITA. National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303.http://www.g3journal.orghb201
    corecore