1,208 research outputs found
Giant Ferroelectric Polarization of CaMn7O12 Induced by a Combined Effect of Dzyaloshinskii-Moriya Interaction and Exchange Striction
By extending our general spin-current model to non-centrosymmetric spin
dimers and performing density functional calculations, we investigate the
causes for the helical magnetic order and the origin of the giant ferroelectric
polarization of CaMn7O12. The giant ferroelectric polarization is proposed to
be caused by the symmetric exchange striction due to the canting of the Mn4+
spin arising from its strong Dzyaloshinskii-Moriya (DM) interaction. Our study
suggests that CaMn7O12 may exhibit a novel magnetoelectric coupling mechanism
in which the magnitude of the polarization is governed by the exchange
striction, but the direction of the polarization by the chirality of the
helical magnetic order.Comment: Accepted for publication in Phys. Rev. Let
Excitons in quasi-one dimensional organics: Strong correlation approximation
An exciton theory for quasi-one dimensional organic materials is developed in
the framework of the Su-Schrieffer-Heeger Hamiltonian augmented by short range
extended Hubbard interactions. Within a strong electron-electron correlation
approximation, the exciton properties are extensively studied. Using scattering
theory, we analytically obtain the exciton energy and wavefunction and derive a
criterion for the existence of a exciton. We also systematically
investigate the effect of impurities on the coherent motion of an exciton. The
coherence is measured by a suitably defined electron-hole correlation function.
It is shown that, for impurities with an on-site potential, a crossover
behavior will occur if the impurity strength is comparable to the bandwidth of
the exciton, corresponding to exciton localization. For a charged impurity with
a spatially extended potential, in addition to localization the exciton will
dissociate into an uncorrelated electron-hole pair when the impurity is
sufficiently strong to overcome the Coulomb interaction which binds the
electron-hole pair. Interchain coupling effects are also discussed by
considering two polymer chains coupled through nearest-neighbor interchain
hopping and interchain Coulomb interaction . Within the
matrix scattering formalism, for every center-of-mass momentum, we find two
poles determined only by , which correspond to the interchain
excitons. Finally, the exciton state is used to study the charge transfer from
a polymer chain to an adjacent dopant molecule.Comment: 24 pages, 23 eps figures, pdf file of the paper availabl
Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO
Following the discovery of superconductivity in an iron-based arsenide
LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc
was pushed up surprisingly to above 40 K by either applying pressure[2] or
replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to
55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was
found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands
for the lanthanide elements) at an apparently optimal doping level. However,
the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice
mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation
of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+
in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice
mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure
Inelastic X-Ray Scattering Study of Exciton Properties in an Organic Molecular crystal
Excitons in a complex organic molecular crystal were studied by inelastic
x-ray scattering (IXS) for the first time. The dynamic dielectric response
function is measured over a large momentum transfer region, from which an
exciton dispersion of 130 meV is observed. Semiempirical quantum chemical
calculations reproduce well the momentum dependence of the measured dynamic
dielectric responses, and thus unambiguously indicate that the lowest Frenkel
exciton is confined within a fraction of the complex molecule. Our results
demonstrate that IXS is a powerful tool for studying excitons in complex
organic molecular systems. Besides the energy position, the IXS spectra provide
a stringent test on the validity of the theoretically calculated exciton wave
functions.Comment: 4 pages, 4 figure
An indirect torsional vibration receptance measurement method for shaft structures
© 2016 Elsevier Ltd. All rights reserved.In this paper, an indirect method for measuring torsional vibration of shaft structures is established. In conventional torsional vibration measurement, knowledge of two fundamental quantities is needed: a torque applied to the system and the angle of twist thus produced, which are both difficult to measure in experiment. In this indirect method, neither a deliberate torque excitation system nor an angular transducer is needed. Instead, a T-like beam structure is introduced and attached to one end of a shaft structure whereby the torques are produced by ordinary forces and only linear accelerometers at a few locations of the beam structure are used. Through the small finite element model of the T-like beam structure, the torsional receptance linking the torque to the angle of twist of the shafting systems is derived from the measured receptances of linear acceleration to the excitation force. This indirect theoretical-experimental combined method overcomes the difficulties and the associated poor accuracy in measuring receptances of torsional vibration of shaft structures, and hence is very useful. Numerical simulation of a test structure with noisy parameters and noisy simulated receptance data is made to validate the theoretical soundness of the method. Vibration tests are carried out on a laboratory shaft structure to demonstrate its accuracy and ease of use
Zero frequency divergence and gauge phase factor in the optical response theory
The static current-current correlation leads to the definitional zero
frequency divergence (ZFD) in the optical susceptibilities. Previous
computations have shown nonequivalent results between two gauges ( and ) under the exact same unperturbed wave functions. We
reveal that those problems are caused by the improper treatment of the
time-dependent gauge phase factor in the optical response theory. The gauge
phase factor, which is conventionally ignored by the theory, is important in
solving ZFD and obtaining the equivalent results between these two gauges. The
Hamiltonians with these two gauges are not necessary equivalent unless the
gauge phase factor is properly considered in the wavefunctions. Both
Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of
trans-polyacetylene serve as our illustrative examples to study the linear
susceptibility through both current-current and dipole-dipole
correlations. Previous improper results of the calculations and
distribution functions with both gauges are discussed. The importance of gauge
phase factor to solve the ZFD problem is emphasized based on SSH and TLM
models. As a conclusion, the reason why dipole-dipole correlation favors over
current-current correlation in the practical computations is explained.Comment: 17 pages, 7 figures, submitted to Phys. Rev.
Structural and superconducting properties in LaFeAs1-xSbxO1-yFy
We report the antimony (Sb) doping effect in a prototype system of iron-based
supercon-ductors LaFeAsO1-yFy (y=0, 0.1, 0.15). X-ray powder diffraction
indicates that the lattice pa-rameters increase with Sb content within the
doping limit. Rietveld structural refinements show that, with the partial
substitution of Sb for As, while the thickness of the Fe2As2 layers increases
significantly, that of the La2O2 layers shrinks simultaneously. So a negative
chemical pressure is indeed "applied" to the superconducting-active Fe2As2
layers, in con-trast to the effect of positive chemical pressure by the
phosphorus doping. Electrical resis-tance and magnetic susceptibility
measurements indicate that, while the Sb doping hardly influences the SDW
anomaly in LaFeAsO, it recovers SDW order for the optimally-doped sample of
y=0.1. In the meantime, the superconducting transition temperature can be
raised up to 30 K in LaFeAs1-xSbxO1-yFy with x=0.1 and y=0.15. The Sb doping
effects are discussed in term of both J1-J2 model and Fermi Surface (FS)
nesting scenario.Comment: 7 pages, 4 figures, 1 table. to be published in Science in China
Series
Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models
The analytical solutions for the third-harmonic generation (THG) on infinite
chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models
of trans-polyacetylene are obtained through the scheme of dipole-dipole ()
correlation. They are not equivalent to the results obtained through static
current-current () correlation or under polarization operator
. The van Hove singularity disappears exactly in the analytical forms,
showing that the experimentally observed two-photon absorption peak (TPA) in
THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers
We have measured the ratio, r = of the formation cross
section, of singlet () and triplet () excitons
from oppositely charged polarons in a large variety of -conjugated
oligomer and polymer films, using the photoinduced absorption and optically
detected magnetic resonance spectroscopies. The ratio r is directly related to
the singlet exciton yield, which in turn determines the maximum
electroluminescence quantum efficiency in organic light emitting diodes (OLED).
We discovered that r increases with the conjugation length, CL; in fact a
universal dependence exists in which depends linearly on ,
irrespective of the chain backbone structure. These results indicate that
-conjugated polymers have a clear advantage over small molecules in OLED
applications.Comment: 5 pages, 4 figure
- …