102 research outputs found

    Block-block entanglement and quantum phase transitions in one-dimensional extended Hubbard model

    Full text link
    In this paper, we study block-block entanglement in the ground state of one-dimensional extended Hubbard model. Our results show that the phase diagram derived from the block-block entanglement manifests richer structure than that of the local (single site) entanglement because it comprises nonlocal correlation. Besides phases characterized by the charge-density-wave, the spin-density-wave, and phase-separation, which can be sketched out by the local entanglement, singlet superconductivity phase could be identified on the contour map of the block-block entanglement. Scaling analysis shows that log2(l){\rm log}_2(l) behavior of the block-block entanglement may exist in both non-critical and the critical regions, while some local extremum are induced by the finite-size effect. We also study the block-block entanglement defined in the momentum space and discuss its relation to the phase transition from singlet superconducting state to the charge-density-wave state.Comment: 8 pages, 9 figure

    Entanglement and quantum phase transition in the extended Hubbard model

    Full text link
    We study quantum entanglement in one-dimensional correlated fermionic system. Our results show, for the first time, that entanglement can be used to identify quantum phase transitions in fermionic systems.Comment: 5 pages, 4 figure

    Fermionic concurrence in the extended Hubbard dimer

    Full text link
    In this paper, we introduce and study the fermionic concurrence in a two-site extended Hubbard model. Its behaviors both at the ground state and finite temperatures as function of Coulomb interaction UU (on-site) and VV (nearest-neighbor) are obtained analytically and numerically. We also investigate the change of the concurrence under a nonuniform field, including local potential and magnetic field, and find that the concurrence can be modulated by these fields.Comment: 5 pages, 7 figure

    Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Get PDF
    Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG) motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides (CpG-ODN) are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM) or control ODN without CpG motif. Bronchoalveolar lavage (BAL) fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF)-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered

    Whole Blood DNA Aberrant Methylation in Pancreatic Adenocarcinoma Shows Association with the Course of the Disease: A Pilot Study

    Get PDF
    Pancreatic tumors are usually diagnosed at an advanced stage in the progression of the disease, thus reducing the survival chances of the patients. Non-invasive early detection would greatly enhance therapy and survival rates. Toward this aim, we investigated in a pilot study the power of methylation changes in whole blood as predictive markers for the detection of pancreatic tumors. We investigated methylation levels at selected CpG sites in the CpG rich regions at the promoter regions of p16, RARbeta, TNFRSF10C, APC, ACIN1, DAPK1, 3OST2, BCL2 and CD44 in the blood of 30 pancreatic tumor patients and in the blood of 49 matching controls. In addition, we studied LINE-1 and Alu repeats using degenerate amplification approach as a surrogate marker for genome-wide methylation. The site-specific methylation measurements at selected CpG sites were done by the SIRPH method. Our results show that in the patient’s blood, tumor suppressor genes were slightly but significantly higher methylated at several CpG sites, while repeats were slightly less methylated compared to control blood. This was found to be significantly associated with higher risk for pancreatic ductal adenocarcinoma. Additionally, high methylation levels at TNFRSCF10C were associated with positive perineural spread of tumor cells, while higher methylation levels of TNFRSF10C and ACIN1 were significantly associated with shorter survival. This pilot study shows that methylation changes in blood could provide a promising method for early detection of pancreatic tumors. However, larger studies must be carried out to explore the clinical usefulness of a whole blood methylation based test for non-invasive early detection of pancreatic tumors

    Dispersive, superfluid-like shock waves in nonlinear optics

    Full text link
    In most classical fluids, shock waves are strongly dissipative, their energy being quickly lost through viscous damping. But in systems such as cold plasmas, superfluids, and Bose-Einstein condensates, where viscosity is negligible or non-existent, a fundamentally different type of shock wave can emerge whose behaviour is dominated by dispersion rather than dissipation. Dispersive shock waves are difficult to study experimentally, and analytical solutions to the equations that govern them have only been found in one dimension (1D). By exploiting a well-known, but little appreciated, correspondence between the behaviour of superfluids and nonlinear optical materials, we demonstrate an all-optical experimental platform for studying the dynamics of dispersive shock waves. This enables us to observe the propagation and nonlinear response of dispersive shock waves, including the interaction of colliding shock waves, in 1D and 2D. Our system offers a versatile and more accessible means for exploring superfluid-like and related dispersive phenomena.Comment: 21 pages, 6 figures Revised abstrac

    Genome-Wide Association Study of Copy Number Variants Suggests LTBP1 and FGD4 Are Important for Alcohol Drinking

    Get PDF
    Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABAA receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence
    corecore