5,766 research outputs found

    Optimization of ultrafine entanglement witnesses

    Full text link
    The ultrafine entanglement witness, introduced in [F. Shahandeh, M. Ringbauer, J.C. Loredo, and T.C. Ralph, Phys. Rev. Lett. \textbf{118}, 110502 (2017)], can seamlessly and easily improve any standard entanglement witness. In this paper, by combining the constraint and the test operators, we rotate the hyperplane determined by the test operator and improve further the original ultrafine entanglement witness. In particular, we present a series of new ultrafine entanglement witnesses, which not only can detect entangled states that the original ultrafine entanglement witnesses cannot detect, but also have the merits that the original ultrafine entanglement witnesses have.Comment: 8 page

    Demonstrating nonlocality induced teleportation through Majorana bound states in a semiconductor nanowire

    Full text link
    It was predicted by Tewari [Phys. Rev. Lett. {\bf 100}, 027001 (2008)] that a teleportationlike electron transfer phenomenon is one of the novel consequences of the existence of Majorana fermion, because of the inherently nonlocal nature. In this work we consider a concrete realization and measurement scheme for this interesting behavior, based on a setup consisting of a pair of quantum dots which are tunnel-coupled to a semiconductor nanowire and are jointly measured by two point-contact detectors. We analyze the teleportation dynamics in the presence of measurement backaction and discuss how the teleportation events can be identified from the current trajectories of strong response detectors.Comment: 5 pages, 3 figure

    A Multi-mode, Multi-class Dynamic Network Model With Queues For Advanced Transportation Information Systems

    Get PDF
    In this paper we propose a composite Variational Inequality formulation for modeling multimode, multi-class stochastic dynamic user equilibrium problem in recurrent congestion networks with queues. The modes typically refer to different vehicle types such as passenger cars, trucks, and buses sharing the same road space. Each vehicle type has its own characteristics, such as free flow speed, vehicle size. We extend single mode deterministic point model to multimode deterministic point model for modeling the asymmetric interactions among various modes. Meanwhile, each mode of travelers is classified into two classes. Class 1 is equipped travelers following stochastic dynamic user-equilibrium with less uncertainty of travel cost, class 2 is unequipped travelers following stochastic dynamic user-equilibrium with more uncertainty of travel cost. A solution algorithm based on stochastic dynamic network loading for logit-based simultaneous route and departure time choices is adopted. Finally a numerical example is presented in a simple network

    Deterministic versus probabilistic quantum information masking

    Full text link
    We investigate quantum information masking for arbitrary dimensional quantum states. We show that mutually orthogonal quantum states can always be served for deterministic masking of quantum information. We further construct a probabilistic masking machine for linearly independent states. It is shown that a set of d dimensional states, {a1A,ta2A,,anA}\{ |a_1 \rangle_A, |t a_2 \rangle_A, \dots, |a_n \rangle_A \}, ndn \leq d, can be probabilistically masked by a general unitary-reduction operation if they are linearly independent. The maximal successful probability of probabilistic masking is analyzed and derived for the case of two initial states.Comment: 5 pages, 1 figure
    corecore