850 research outputs found

    NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative Trading

    Full text link
    We introduce NoxTrader, a sophisticated system designed for portfolio construction and trading execution with the primary objective of achieving profitable outcomes in the stock market, specifically aiming to generate moderate to long-term profits. The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data, particularly focusing on time-series analysis due to the nature of the dataset employed. In our approach, we utilize price and volume data of US stock market for feature engineering to generate effective features, including Return Momentum, Week Price Momentum, and Month Price Momentum. We choose the Long Short-Term Memory (LSTM)model to capture continuous price trends and implement dynamic model updates during the trading execution process, enabling the model to continuously adapt to the current market trends. Notably, we have developed a comprehensive trading backtesting system - NoxTrader, which allows us to manage portfolios based on predictive scores and utilize custom evaluation metrics to conduct a thorough assessment of our trading performance. Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75. Finally, we monitor the dispersion of our prediction data and perform a comparative analysis against actual market data. Through the use of filtering techniques, we improved the initial -60% investment return to 325%.Comment: 5 pages, 7 figure

    AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Get PDF
    Background: Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results: We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions: AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous applications in fluorescent protein localization and protein–protein interaction studies. In addition, AGROBEST offers a new way to dissect the molecular mechanisms involved in Agrobacterium-mediated DNA transfer

    Role of Pigment Epithelium-Derived Factor in Stem/Progenitor Cell-Associated Neovascularization

    Get PDF
    Pigment epithelium-derived factor (PEDF) was first identified in retinal pigment epithelium cells. It is an endogenously produced protein that is widely expressed throughout the human body such as in the eyes, liver, heart, and adipose tissue; it exhibits multiple and varied biological activities. PEDF is a multifunctional protein with antiangiogenic, antitumorigenic, antioxidant, anti-inflammatory, antithrombotic, neurotrophic, and neuroprotective properties. More recently, PEDF has been shown to be the most potent inhibitor of stem/progenitor cell-associated neovascularization. Neovascularization is a complex process regulated by a large, interacting network of molecules from stem/progenitor cells. PEDF is also involved in the pathogenesis of angiogenic eye disease, tumor growth, and cardiovascular disease. Novel antiangiogenic agents with tolerable side effects are desired for the treatment of patients with various diseases. Here, we review the value of PEDF as an important endogenous antiangiogenic molecule; we focus on the recently identified role of PEDF as a possible new target molecule to influence stem/progenitor cell-related neovascularization

    Using nomogram of the Barcelona Clinic Liver Cancer system for treatment selection in patients with stage C hepatocellular carcinoma

    Full text link
    Abstract Background The nomogram of the Barcelona Clinic Liver Cancer (BCLC) for hepatocellular carcinoma (HCC) has been used for outcome prediction. Patients with BCLC stage C HCC often undergo anti-cancer therapy against current treatment guidelines in real world practice. We aimed to use the nomogram to provide guidance on treatment selection for BCLC stage C patients. Methods A total of 1317 patients with stage C HCC were retrospectively analyzed and divided into four groups by nomogram points. One-to-one matched pairs between patients receiving different treatments were generated by the propensity score with matching model within these groups. Survival analysis was performed by Kaplan-Meier method with log-rank test. Results Patients with higher nomogram points were more often treated with targeted or supportive therapies (p  15, there was no significant difference in survival between patients receiving two different treatment strategies. Conclusions The nomogram of BCLC system is a feasible tool to help stage C HCC patients to select primary anti-cancer treatment in pursuance of better overall survival.https://deepblue.lib.umich.edu/bitstream/2027.42/142787/1/12885_2018_Article_4202.pd

    Albuminâ bilirubin gradeâ based nomogram of the BCLC system for personalized prognostic prediction in hepatocellular carcinoma

    Full text link
    Background & AimsThe prognostic accuracy of individual hepatocellular carcinoma (HCC) patient in each Barcelona Clinic Liver Cancer (BCLC) stage is unclear. We aimed to develop and validate an albuminâ bilirubin (ALBI) gradeâ based nomogram of BCLC to estimate survival for individual HCC patient.MethodsBetween 2002 and 2016, 3690 patients with newly diagnosed HCC were prospectively enrolled and retrospectively analysed. Patients were randomly split into derivation and validation cohort by 1:1 ratio. Multivariate Cox proportional hazards model was used to generate the nomogram from tumour burden, ALBI grade and performance status (PS). The concordance index and calibration plot were determined to evaluate the performance of this nomogram.ResultsBeta coefficients from the Cox model were used to assign nomogram points to different degrees of tumour burden, ALBI grade and PS. The scores of the nomogram ranged from 0 to 24, and were used to predict 3â and 5â year patient survival. The concordance index of this nomogram was 0.77 (95% confidence interval [CI]: 0.71â 0.81) in the derivation cohort and 0.76 (95% CI: 0.71â 0.81) in the validation cohort. The calibration plots to predict both 3â and 5â year survival rate well matched with the 45â degree ideal line for both cohorts, except for ALBIâ based BCLC stage 0 in the validation cohort.ConclusionsThe proposed ALBIâ based nomogram of BCLC system is a simple and feasible strategy in the precision medicine era. Our data indicate it is a straightforward and userâ friendly prognostic tool to estimate the survival of individual HCC patient except for very early stage patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153250/1/liv14249_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153250/2/liv14249.pd

    AMiBA Wideband Analog Correlator

    Get PDF
    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.Comment: 28 pages, 23 figures, ApJ in press

    Thrombomodulin Regulates Keratinocyte Differentiation and Promotes Wound Healing

    Get PDF
    The membrane glycoprotein thrombomodulin (TM) has been implicated in keratinocyte differentiation and wound healing, but its specific function remains undetermined. The epidermis-specific TM knockout mice were generated to investigate the function of TM in these biological processes. Primary cultured keratinocytes obtained from TMlox/lox; K5-Cre mice, in which TM expression was abrogated, underwent abnormal differentiation in response to calcium induction. Poor epidermal differentiation, as evidenced by downregulation of the terminal differentiation markers loricrin and filaggrin, was observed in TMlox/lox; K5-Cre mice. Silencing TM expression in human epithelial cells impaired calcium-induced extracellular signal–regulated kinase pathway activation and subsequent keratinocyte differentiation. Compared with wild-type mice, the cell spreading area and wound closure rate were lower in keratinocytes from TMlox/lox; K5-Cre mice. In addition, the lower density of neovascularization and smaller area of hyperproliferative epithelium contributed to slower wound healing in TMlox/lox; K5-Cre mice than in wild-type mice. Local administration of recombinant TM (rTM) accelerated healing rates in the TM-null skin. These data suggest that TM has a critical role in skin differentiation and wound healing. Furthermore, rTM may hold therapeutic potential for the treatment of nonhealing chronic wounds
    corecore