12,971 research outputs found

    Quantum Information Approach to Bose-Einstein Condensate in a Tilted Double-Well System

    Full text link
    We study the ground state properties of bosons in a tilted double-well system. We use fidelity susceptibility to identify the possible ground state transitions under different tilt values. For a very small tilt (for example 101010^{-10}), two transitions are found. For a moderate tilt (for example 10310^{-3}), only one transition is found. For a large tilt (for example 10110^{-1}), no transition is found. We explain this by analyzing the spectrum of the ground state. The quantum discord and total correlation of the ground state under different tilts are also calculated to indicate those transitions. In the transition region, both quantities have peaks decaying exponentially with particle number NN. This means for a finite-size system the transition region cannot be explained by the mean-field theory, but in the large-NN limit it can be.Comment: 5 pages, 5 figures, slightly different from the published versio

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    A new model for the double well potential

    Full text link
    A new model for the double well potential is presented in the paper. In the new potential, the exchanging rate could be easily calculated by the perturbation method in supersymmetric quantum mechanics. It gives good results whether the barrier is high or sallow. The new model have many merits and may be used in the double well problem.Comment: 3pages, 3figure

    Construction of a polarization insensitive lens from a quasi-isotropic metamaterial slab

    Full text link
    We propose to employ the quasiisotropic metamaterial (QIMM) slab to construct a polarization insensitive lens, in which both E- and H-polarized waves exhibit the same refocusing effect. For shallow incident angles, the QIMM slab will provide some degree of refocusing in the same manner as an isotropic negative index material. The refocusing effect allows us to introduce the ideas of paraxial beam focusing and phase compensation by the QIMM slab. On the basis of angular spectrum representation, a formalism describing paraxial beams propagating through a QIMM slab is presented. Because of the negative phase velocity in the QIMM slab, the inverse Gouy phase shift and the negative Rayleigh length of paraxial Gaussian beam are proposed. We find that the phase difference caused by the Gouy phase shift in vacuum can be compensated by that caused by the inverse Gouy phase shift in the QIMM slab. If certain matching conditions are satisfied, the intensity and phase distributions at object plane can be completely reconstructed at image plane. Our simulation results show that the superlensing effect with subwavelength image resolution could be achieved in the form of a QIMM slab.Comment: 25 pages, 8 figure

    On the scaling of entropy viscosity in high order methods

    Full text link
    In this work, we outline the entropy viscosity method and discuss how the choice of scaling influences the size of viscosity for a simple shock problem. We present examples to illustrate the performance of the entropy viscosity method under two distinct scalings

    Some Exact Results for Spanning Trees on Lattices

    Full text link
    For nn-vertex, dd-dimensional lattices Λ\Lambda with d2d \ge 2, the number of spanning trees NST(Λ)N_{ST}(\Lambda) grows asymptotically as exp(nzΛ)\exp(n z_\Lambda) in the thermodynamic limit. We present an exact closed-form result for the asymptotic growth constant zbcc(d)z_{bcc(d)} for spanning trees on the dd-dimensional body-centered cubic lattice. We also give an exact integral expression for zfccz_{fcc} on the face-centered cubic lattice and an exact closed-form expression for z488z_{488} on the 4884 \cdot 8 \cdot 8 lattice.Comment: 7 pages, 1 tabl
    corecore