10,736 research outputs found

    Ground-state properties of one-dimensional anyon gases

    Full text link
    We investigate the ground state of the one-dimensional interacting anyonic system based on the exact Bethe ansatz solution for arbitrary coupling constant (0≀c≀∞0\leq c\leq \infty) and statistics parameter (0≀Îș≀π0\leq \kappa \leq \pi). It is shown that the density of state in quasi-momentum kk space and the ground state energy are determined by the renormalized coupling constant câ€Čc'. The effect induced by the statistics parameter Îș\kappa exhibits in the momentum distribution in two aspects: Besides the effect of renormalized coupling, the anyonic statistics results in the nonsymmetric momentum distribution when the statistics parameter Îș\kappa deviates from 0 (Bose statistics) and π\pi (Fermi statistics) for any coupling constant cc. The momentum distribution evolves from a Bose distribution to a Fermi one as Îș\kappa varies from 0 to π\pi. The asymmetric momentum distribution comes from the contribution of the imaginary part of the non-diagonal element of reduced density matrix, which is an odd function of Îș\kappa. The peak at positive momentum will shift to negative momentum if Îș\kappa is negative.Comment: 6 pages, 5 figures, published version in Phys. Rev.

    Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation

    Full text link
    Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with size of 60x60 Mm in horizontal direction and by depth 20 Mm from level of the visible solar surface. We use a realistic initial model of the Sun and apply equation of state and opacities of stellar matter. The equations of fully compressible radiation magnetohydrodynamics with dynamical viscosity and gravity are solved. We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics, 2) the diffusion approximation for the radiative transfer, 3) dynamical viscosity from subgrid scale modeling. In simulation we take uniform two-dimesional grid in gorizontal plane and nonuniform grid in vertical direction with number of cells 600x600x204. We use 512 processors with distributed memory multiprocessors on supercomputer MVS-100k in the Joint Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 / SOHO XXI conferenc

    Some Exact Results for Spanning Trees on Lattices

    Full text link
    For nn-vertex, dd-dimensional lattices Λ\Lambda with d≄2d \ge 2, the number of spanning trees NST(Λ)N_{ST}(\Lambda) grows asymptotically as exp⁥(nzΛ)\exp(n z_\Lambda) in the thermodynamic limit. We present an exact closed-form result for the asymptotic growth constant zbcc(d)z_{bcc(d)} for spanning trees on the dd-dimensional body-centered cubic lattice. We also give an exact integral expression for zfccz_{fcc} on the face-centered cubic lattice and an exact closed-form expression for z488z_{488} on the 4⋅8⋅84 \cdot 8 \cdot 8 lattice.Comment: 7 pages, 1 tabl

    Slow Relaxation Process in Ising like Heisenberg Kagome Antiferromagnets due to Macroscopic Degeneracy in the Ordered State

    Full text link
    We study relaxation phenomena in the ferromagnetically ordered state of the Ising-like Heisenberg kagome antiferromagnets. We introduce the "weathervane loop" in order to characterize macroscopic degenerate ordered states and study the microscopic mechanism of the slow relaxation from a view point of the dynamics of the weathervane loop configuration. This mechanism may give a possible origin of the slow relaxation reported in recent experiments.Comment: 6pages, 4figures, HFM2006 proceeding

    Structure in the nucleus of NGC 1068 at 10 microns

    Get PDF
    New 8 to 13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8 to 13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central regions of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet induced star formation in NGC 1068

    The 8.3 and 12.4 micron imaging of the Galactic Center source complex with the Goddard infrared array camera

    Get PDF
    A 30 x 30 arcsec field at the Galactic Center (1.5 x 1.5 parsec) was mapped at 8.3 microns and 12.41 microns with high spatial resolution and accurate relative astrometry, using the 16 x 16 Si:Bi accumulation mode charge injection device Goddard infrared array camera. The design and performance of the array camera detector electronics system and image data processing techniques are discussed. Color temperature and dust opacity distributions derived from the spatially accurate images indicate that the compact infrared sources and the large scale ridge structure are bounded by warmer, more diffuse material. None of the objects appear to be heated appreciably by internal luminosity sources. These results are consistent with the model proposing that the complex is heated externally by a strong luminosity source at the Galactic Center, which dominates the energetics of the inner few parsecs of the galaxy

    Vorticity Budget of Weak Thermal Convection in Keplerian disks

    Get PDF
    By employing the equations of mean-square vorticity (enstrophy) fluctuations in strong shear flows, we demonstrate that unlike energy production of turbulent vorticity in nonrotating shear flows, the turbulent vorticity of weak convection in Keplerian disks cannot gain energy from vortex stretching/tilting by background shear unless the asscoiated Reynolds stresses are negative. This is because the epicyclic motion is an energy sink of the radial component of mean-square turbulent vorticity in Keplerian disks when Reynolds stresses are positive. Consequently, weak convection cannot be self-sustained in Keplerian flows. This agrees with the results implied from the equations of mean-square velocity fluctuations in strong shear flows. Our analysis also sheds light on the explanation of the simulation result in which positive kinetic helicity is produced by the Balbus-Hawley instability in a vertically stratified Keplerian disk. We also comment on the possibility of outward angular momentum transport by strong convection based on azimuthal pressure perturbations and directions of energy cascade.Comment: 8 pages, 1 figure, emulateapj.sty, revised version in response to referee's comments, accepted by Ap
    • 

    corecore