401 research outputs found

    Cognitive Deficit of Deep Learning in Numerosity

    Full text link
    Subitizing, or the sense of small natural numbers, is an innate cognitive function of humans and primates; it responds to visual stimuli prior to the development of any symbolic skills, language or arithmetic. Given successes of deep learning (DL) in tasks of visual intelligence and given the primitivity of number sense, a tantalizing question is whether DL can comprehend numbers and perform subitizing. But somewhat disappointingly, extensive experiments of the type of cognitive psychology demonstrate that the examples-driven black box DL cannot see through superficial variations in visual representations and distill the abstract notion of natural number, a task that children perform with high accuracy and confidence. The failure is apparently due to the learning method not the CNN computational machinery itself. A recurrent neural network capable of subitizing does exist, which we construct by encoding a mechanism of mathematical morphology into the CNN convolutional kernels. Also, we investigate, using subitizing as a test bed, the ways to aid the black box DL by cognitive priors derived from human insight. Our findings are mixed and interesting, pointing to both cognitive deficit of pure DL, and some measured successes of boosting DL by predetermined cognitive implements. This case study of DL in cognitive computing is meaningful for visual numerosity represents a minimum level of human intelligence.Comment: Accepted for presentation at the AAAI-1

    Anodic Nanostructures for Solar Cell Applications

    Get PDF
    As a versatile, straightforward, and cost-effective strategy for the synthesis of self-organized nanomaterials, electrochemical anodization is nowadays frequently used to synthesize anodic metal oxide nanostructures for various solar cell applications. This chapter mainly discusses the synthesis of various anodic TiO2 nanostructures on foils and as membranes or powders, and their potential use as the photoanode materials based on foils, transparent conductive oxide substrates, and flexible substrates in dye-sensitized solar cell applications, acting as dye-loading frames, light-harvesting enhancement assembly, and electron transport medium. Through the control and modulation of the electrical and chemical parameters of electrochemical anodization process, such as applied voltages, currents, bath temperatures, electrolyte composition, or post-treatments, anodic nanostructures with controllable structures and geometries and unique optical, electronic, and photoelectric properties in solar cell applications can be obtained. Compared with other types of nanostructures, there are several major advantages for anodic nanostructures to be used in solar cells. They are (1) optimized solar cell configuration to achieve efficient light utilization; (2) easy fabrication of large size nanostructures to enhance light scattering; (3) precise modulation of the electrochemical processes to realize periodic nanostructured geometry with excellent optical properties; (4) unidirectional electron transport pathways with suppressed charge recombination; and (5) large surface areas by modification of nanostructures. Due to the simple fabrication processes and unique properties, the anodic nanostructures will have a fascinating future to boost the solar cell performances

    Ultrasound on Erect Penis Improves Plaque Identification in Patients With Peyronie’s Disease

    Get PDF
    ObjectivesTo compare the sensitivity of identification of penile plaques in the erect and flaccid penises by ultrasound in patients with Peyronie’s disease (PD).Materials and MethodsA total of 75 PD patients were screened by palpation and ultrasonography for penile lesions in both flaccid and erect penises induced by prostaglandin E1 (PG-1) injection.ResultsA total of 138 lesions were identified by ultrasound in the erect penises induced by injection of PG-1. However, only 74.6% of the lesions (103) were detectable by the palpation of the flaccid penises, and 84.1% (116) by ultrasound of the flaccid penises. The ultrasound confirmed 99 of the palpated lesions in the flaccid penises. The detection rate of lesions in drug-induced erect penises by ultrasound was significantly higher than those in the flaccid penises by the ultrasound (P < 0.01) or palpation (P < 0.0005) The type of penile lesions identified by ultrasonography included tunical thickening, calcifications, septal fibrosis, and intracavernosal fibrosis. The ratios of these lesions confirmed by ultrasound were 52.6, 33.6, 6.0, and 7.8%, respectively, in the flaccid penises, and 55.8, 28.3, 8.7, and 7.2%, respectively, in the erect penises.ConclusionDrug-induced erection can be used in suspicious PD patients when penile lesion is not identified by palpation or ultrasound in the flaccid penis
    • …
    corecore