19 research outputs found

    The Survey of H5N1 Flu Virus in Wild Birds in 14 Provinces of China from 2004 to 2007

    Get PDF
    The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.)) were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7), which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2) and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005.We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds

    6G Network AI Architecture for Everyone-Centric Customized Services

    Full text link
    Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system's overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions

    6G network AI architecture for everyone-centric customized services

    No full text
    Data de publicació electrònica: 25 de juliol de 2022Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system’s overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions

    Design of Trusted Security Routing in Wireless Sensor Networks Based on Quantum Ant Colony Algorithm

    No full text
    To design an effective secure routing of trusted nodes in wireless sensor networks, quantum ant colony algorithm is applied to the design of large-scale wireless sensor network routing. The trustworthy network is used as the pheromone distribution strategy.Then, the pheromone is encoded by the quantum bit. The pheromone is updated by the quantum revolving door, and the energy consumption prediction is carried out to select the path. Finally, the trusted security routing algorithm of the wireless sensor network based on the global energy balance is realized. The quantum ant colony algorithm is superior to the traditional ant colony algorithm in algorithm convergence speed and global optimization. It can balance the energy consumption of the network node and can effectively resist the attacks such as Wormholes.It is very promising to apply the quantum ant colony algorithm to the routing algorithm of large scale wireless sensor networks

    Design of Trusted Security Routing in Wireless Sensor Networks Based on Quantum Ant Colony Algorithm

    No full text

    Assessment of the Effects of Heavy Metals in Soils after Removal by Nanoscale Zero-Valent Iron with Three Methods

    No full text
    Nanoscale zero-valent iron (nZVI) has been broadly applied in the remediation of heavy metals pollution. In this research, the toxicity characteristic leaching procedure (TCLP), the in vitro gastrointestinal (IVG) method, and the diffusive gradients in thin-films (DGT) technique were used to evaluate the effects of heavy metals in soil with remediation by nZVI. The results indicate that, compared with the dose of 0.5 g·L−1, the nZVI in the dose of 1.0 g·L−1 can remove the heavy metals in the soil. The leaching toxicities of the heavy metals (Cr, Cu, Zn, Pb) showed apparent decreases after the remediation by nZVI. In the gastric phase, the highest bioaccessibility values of the Cr, Cu, Zn, Pb were decreased by 27.2, 31.7, 11.7, and 20.1%, respectively. Moreover, in the gastric phase, the highest bioaccessibility values of the Cr, Cu, Zn, Pb were decreased by 5.5, 1.29, 8.0, and 7.3%, respectively. The availabilities of the heavy metals were also reduced. The above results show that the nZVI effectively reduced the heavy metal pollution in the soil

    NAD+ Modulates the Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells via Akt Signaling Pathway

    No full text
    Nicotinamide adenine dinucleotide hydrate (NAD+) acts as the essential component of the tricarboxylic citric acid (TCA) cycle and has important functions in diverse biological processes. However, the roles of NAD+ in regulating adult neural stem/progenitor cells (aNSPCs) remain largely unknown. Here, we show that NAD+ exposure leads to the reduced proliferation and neuronal differentiation of aNSPCs and induces the apoptosis of aNSPCs. In addition, NAD+ exposure inhibits the morphological development of neurons. Mechanistically, RNA sequencing revealed that the transcriptome of aNSPCs is altered by NAD+ exposure. NAD+ exposure significantly decreases the expression of multiple genes related to ATP metabolism and the PI3k-Akt signaling pathway. Collectively, our findings provide some insights into the roles and mechanisms in which NAD+ regulates aNSPCs and neuronal development

    Simultaneous Measurement Of Temperature And Strain Using Multi-core Fiber With In-line Cascaded Symmetrical Ellipsoidal Fiber Balls-based Mach-zehnder Interferometer Structure

    No full text
    Simultaneous measurement of temperature and strain using multi-core fiber (MCF) with an in-line cascaded symmetrical ellipsoidal fiber balls structure of Mach-Zehnder interferometer (MZI) is presented. The sensor is fabricated by using an ordinary fusion apparatus. The thermo-coupling effect is realized through Germanium (Ge)-doped central and hexagonal distributed outer cores of MCF. A high-quality transmission spectrum is obtained with a fringe visibility of 12-15 dB and higher extinction ratio. The sensor exhibits superior mechanical strength compared with the fragile structures, such as tapered, etched, misaligned and offset fibers. The temperature sensitivity of 137.6 pm/?C and 68.1 pm/?C in the range of 20-90?C, and the strain sensitivity of -0.42 pm/µε and -1.19 pm/µe in the range of 0- 801 µe are obtained, when probe L is 40mm and 20mm, respectively. Simultaneous measurement of temperature and strain can be achieved by solving the coefficient matrix and tracing the wavelength shifts in the interference spectrum. Besides, the sensor has many advantages, such as high sensitivity, easy fabrication, simple structure, being stable and inexpensive, which may find potential applications in the field of optical sensing

    NAD+ Modulates the Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells via Akt Signaling Pathway

    No full text
    Nicotinamide adenine dinucleotide hydrate (NAD+) acts as the essential component of the tricarboxylic citric acid (TCA) cycle and has important functions in diverse biological processes. However, the roles of NAD+ in regulating adult neural stem/progenitor cells (aNSPCs) remain largely unknown. Here, we show that NAD+ exposure leads to the reduced proliferation and neuronal differentiation of aNSPCs and induces the apoptosis of aNSPCs. In addition, NAD+ exposure inhibits the morphological development of neurons. Mechanistically, RNA sequencing revealed that the transcriptome of aNSPCs is altered by NAD+ exposure. NAD+ exposure significantly decreases the expression of multiple genes related to ATP metabolism and the PI3k-Akt signaling pathway. Collectively, our findings provide some insights into the roles and mechanisms in which NAD+ regulates aNSPCs and neuronal development
    corecore