3,602 research outputs found

    Fermions Tunneling from Higher-Dimensional Reissner-Nordstr\"om Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Full text link
    Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordstr\"{o}m black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordstr\"{o}m black hole spacetime. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.Comment: 7 page

    Variation of benzyl anions in MgAl-layered double hydroxides: Fire and thermal properties in PMMA

    Get PDF
    Magnesium aluminum layered double hydroxides (MgAl-LDHs) intercalated with a range of benzyl anions were prepared using the coprecipitation method. The benzyl anions differ in functionality (i.e. carboxylate, sulfonate, and phosphonate) and presence or absence of an amino substituent. Various methods for preparing LDHs (i.e. ion exchange, coprecipitation and rehydration of the calcined LDH methods) have been compared with the MgAl-benzene phosphonate and their effect on fire and thermal properties was studied. After characterization, the MgAl-LDHs were melt-blended with poly(methyl methacrylate) (PMMA) at loadings of 3 and 10% by weight to prepare composites. Characterization of the LDHs and the PMMA composites was performed using FTIR, XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. FTIR and XRD analyses confirmed the presence of the charge balancing benzyl anions in the galleries of the MgAl-LDHs. Improvements in fire and thermal properties of the PMMA composites were observed. The cone calorimeter revealed that the addition of 10% MgAl-LDHs reduces the peak heat release rate by more than 30%

    Does organic modification of layered double hydroxides improve the fire performance of PMMA?

    Get PDF
    The effect of modified layered double hydroxides (LDHs) on fire properties of poly(methyl methacrylate) is investigated. Organically-modified LDHs were prepared via rehydration of calcined hydrotalcite in a palmitate solution. Composites consisting of the organo-LDHs, unmodified hydrotalcite and calcined oxides were prepared with poly(methyl methacrylate) using melt blending. Thermal and fire properties of the (nano)composites were studied. The thermogravimetric analyses of the composites show an increase in thermal stability. Fire performance, evaluated using cone calorimetry, show that organically-modified LDHs composites give the best reductions in peak heat release rate, PHRR, i.e., 51% at 10% weight loading. Dispersion of the LDHs was characterized using transmission electron microscopy and X–ray diffraction. Nanocomposite formation was observed with organically-modified LDHs, while the unmodified LDH composites gave only microcomposites

    Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonite

    Get PDF
    Copolymer nanocomposites were prepared by suspension copolymerization of bis[2-(methacryloyloxy)ethyl] phosphate and methyl methacrylate, together with bis(2-ethylhexyl) phosphate layered double hydroxide and a montmorillonite, Cloisite 93A. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of nanocomposites and the dispersion of additives in the polymer. The thermal stability of the nanocomposites has been assessed by thermogravimetric analysis and cone calorimetry has been used to study the fire properties. Bis[2-(methacryloyloxy)ethyl] phosphate not only copolymerized with MMA, but also aids in the dispersion of additives in PMMA. The copolymer nanocomposites have better dispersion and higher degradation temperature and more char mass than the corresponding PMMA nanocomposites. The largest peak reduction in the heat release rate of the copolymer nanocomposites are 52 and 65% for LDH and MMT additives, respectively

    Variation of anions in layered double hydroxides: Effects on dispersion and fire properties

    Get PDF
    Layered double hydroxides (LDHs) are interesting materials for nanocomposite formation because one can vary the identity of the metals, the anions and the stoichiometry to see the effect of these on the ability of the nano-material to disperse in a polymer and to see what effect dispersion has on the properties of the polymer. In this study, the anions 2-ethylhexyl sulfate (SEHS), bis(2-ethylhexyl) phosphate (HDEHP) and dodecyl benzenesulfonate (SDBS) have been utilized as the charge balancing anions to synthesize organo-LDHs. Nanocomposites of poly(methyl methacrylate) (PMMA) and polystyrene (PS) with organo-LDHs were prepared both by melt blending and bulk polymerization. X-ray diffraction and transmission electron microscopy were used to characterize the morphology of the nanocomposites while the thermal stability and fire properties of nanocomposites were studied by thermogravimetric analysis and cone calorimetry; the mechanical properties are also investigated. In general, it is easier to disperse these organo-LDHs in PMMA than in PS, but the sulfate cannot be dispersed at the nanometer level in either material. The addition of these organo-LDHs does not affect the mechanical properties. The best fire properties are obtained with the sulfonate LDH, SDBS; the reduction in the peak heat release rate is almost 50% for both polymers

    Structure - property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum

    Get PDF
    Polystyrene/layered double hydroxides (PS/LDHs) nanocomposites were prepared by free radical polymerization of styrene monomer in the presence of LDHs intercalated with 4,4′-azobis(4-cyanopentanoate) anions (LDH–ACPA). XRD and ATR-IR are used to confirm that the materials produced are layered and the presence of the azo-initiator anions in these LDHs. These LDHs were used successfully to polymerize styrene and both XRD and TEM images of the composites support the formation of a mixed exfoliated-intercalated nanocomposite for ZnAl–ACPA but a microcomposite for MgAl–ACPA. The magnesium-containing LDHs decreased the glass transition temperature (Tg) of the composites while ZnAl–ACPA did not affect Tg significantly. The Tg depression is related to enhanced polymer dynamics due to the extra free volume at the LDH additive-polymer interface. A reduction in the onset of thermal decomposition temperature was observed in PS/LDH compared to neat PS, likely due to the early decomposition of the LDH. The fire performance, as evaluated by the cone calorimeter, reveal that PS–ZnAl–ACPA shows enhanced fire properties compared to PS–MgAl–ACPA

    Functional relevance of the newly evolved sperm dynein intermediate chain multigene family in Drosophila melanogaster males.

    Get PDF
    In many animal species, traits associated with male fitness evolve rapidly. Intersexual conflict and male-male competition have been suggested to drive this rapid evolution. These fast evolutionary dynamics result in elevated rates of amino acid replacement and modification of gene expression attributes. Gene acquisition is another mechanism that might contribute to fitness differences among males. However, empirical evidence of fitness effects associated with newly evolved genes is scarce. The Sdic multigene family originated within the last 5.4 myr in the lineage that leads to D. melanogaster and encodes a sperm dynein intermediate chain presumably involved in sperm motility. The silencing of the Sdic multigene family, followed by the screening of relevant phenotypes, supports the role of the Sdic multigene family in sperm competition. The case of the Sdic multigene family illustrates the flexibility of genetic networks in incorporating lineage-specific gene novelties that can trigger an evolutionary arms race between males

    Quire: Lightweight Provenance for Smart Phone Operating Systems

    Full text link
    Smartphone apps often run with full privileges to access the network and sensitive local resources, making it difficult for remote systems to have any trust in the provenance of network connections they receive. Even within the phone, different apps with different privileges can communicate with one another, allowing one app to trick another into improperly exercising its privileges (a Confused Deputy attack). In Quire, we engineered two new security mechanisms into Android to address these issues. First, we track the call chain of IPCs, allowing an app the choice of operating with the diminished privileges of its callers or to act explicitly on its own behalf. Second, a lightweight signature scheme allows any app to create a signed statement that can be verified anywhere inside the phone. Both of these mechanisms are reflected in network RPCs, allowing remote systems visibility into the state of the phone when an RPC is made. We demonstrate the usefulness of Quire with two example applications. We built an advertising service, running distinctly from the app which wants to display ads, which can validate clicks passed to it from its host. We also built a payment service, allowing an app to issue a request which the payment service validates with the user. An app cannot not forge a payment request by directly connecting to the remote server, nor can the local payment service tamper with the request
    • …
    corecore