35 research outputs found

    Manipulation of molecular vibrational motions via pure rotational excitations

    Get PDF

    Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    Full text link
    The absorption of a single photon that excites a quantum system from a low to a high energy level is an elementary process of light-matter interaction, and a route towards realizing pure single-photon absorption has both fundamental and practical implications in quantum technology. Due to nonlinear optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in a multi-level quantum systems. To that end, a new multi-objective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work not only deepens our understanding of light-matter interactions, but also offers a new way to study photophysical and photochemical processes in the "absence" of nonlinear optical effects.Comment: 11 pages, 5 figure

    Two-photon induced ultrafast coherence decay of highly excited states in single molecules

    Get PDF
    Coherence is a key aspect of a large variety of processes, ranging from the coherent delocalisation of excitation energy, which is important for energy transfer in supramolecular nanostructures, to coherence between electronic states of a single quantum system, which is essential for quantum optical applications. Coherent control schemes exploit this quantum mechanical property by actively manipulating the outcome of dynamical processes. Moreover, this technique allows measuring dynamical processes under the influence of dephasing. However, going beyond the ensemble averaged situation, i.e. working on the level of single quantum systems, is highly challenging for quantum systems embedded in a solid matrix at elevated temperature. Since interactions between the quantum system and its specific local environment are a priori unknown, this requires a reliable approach to retrieve the relevant parameters governing the ultrafast coherent dynamics. Here, we present measurements of the ultrafast coherence decay of two-photon accessible excited states in single organic molecules embedded in a disordered environment at room temperature. Wecombine this experimental approach with a quantum dynamics identification procedure, which yields a minimum three-level model to describe the obtained data with very good agreement. In particular, we are able to retrieve the ultrafast (coherent) excited state dynamics in single molecules and demonstrate its sensitivity to the local nanoenvironment from molecule to molecule. This work provides a robust approach to measure and analyse ultrafast quantum dynamics in complex nanosystems

    Orientational quantum revivals induced by a single-cycle terahertz pulse

    Full text link
    The phenomenon of quantum revivals resulting from the self-interference of wave packets has been observed in several quantum systems and utilized widely in spectroscopic applications. Here, we present a combined analytical and numerical study on the generation of orientational quantum revivals (OQRs) exclusively using a single-cycle THz pulse. As a proof of principle, we examine the scheme in the linear polar molecule HCN with experimentally accessible pulse parameters and obtain strong field-free OQR without requiring the condition of the sudden-impact limit. To visualize the involved quantum mechanism, we derive a three-state model using the Magnus expansion of the time-evolution operator. Interestingly, the THz pulse interaction with the electric-dipole moment can activate direct multiphoton processes, leading to OQR enhancements beyond that induced by a rotational ladder-climbing mechanism from the rotational ground state. This work provides an explicit and feasible approach toward quantum control of molecular rotation, which is at the core of current research endeavors with potential applications in atomic and molecular physics, photochemistry, and quantum information science.Comment: 17 pages, 6 Figure
    corecore