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Phase-only shaped laser pulses in optimal control theory: Application
to indirect photofragmentation dynamics in the weak-field limit

Chuan-Cun Shu and Niels E. Henriksena)

Department of Chemistry, Building 207, Technical University of Denmark, DK-2800,
Kongens Lyngby, Denmark

(Received 2 November 2011; accepted 2 January 2012; published online 23 January 2012)

We implement phase-only shaped laser pulses within quantum optimal control theory for laser-
molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI
in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency
distribution can substantially modify transient dissociation probabilities as well as the momentum
distribution associated with the relative motion of Na and I. © 2012 American Institute of Physics.
[doi:10.1063/1.3678013]

I. INTRODUCTION

Within the last decade it has become possible to tailor the
electric field of laser pulses

E(t) = Re

[∫ ∞

−∞
E(ω)eiφ(ω)e−iωtdω

]
, (1)

via the control of the spectral amplitudes of the frequency
distribution E(ω) as well as the associated phases φ(ω) (see,
e.g., Ref. 1). In laser-molecule interaction, the control of these
macroscopic parameters in the laboratory leads to control at
the molecular level. For example, the variation of the phases
implies that quantum interferences, associated with the coher-
ent excitation of quantum states, are controlled.

The theoretical study of laser control has also progressed
both in terms of insights and methods, see, e.g., Refs. 2–4.
The most effective theoretical approach to design laser pulses
in order to achieve a desired outcome of photophysical pro-
cesses is based on the framework of optimal control theory
(OCT).2, 5 Usually, OCT will modify both the frequency dis-
tribution and the phases in order to find an optimized laser
pulse.

Many experiments are carried out using only phase mod-
ulation of the laser pulses. This reduces the “search space”
for optimizing the effect of the laser pulse. Furthermore, this
approach has the advantage of conserving the pulse energy
and hence highlighting the effect of quantum coherence phe-
nomena. If a phase-only shaped approach is used there exists
no unique way to determine the phase function that will lead
to a desired outcome of the laser-molecule interaction. Usu-
ally optimization algorithms such as genetic algorithms have
been employed to address this problem. Phase-only shaped
laser pulses have been optimized by this approach combined
with feedback from an experiment (see, e.g., Ref. 6) or from
a theoretical description of the dynamics obtained from a nu-
merical solution of the time-dependent Schrödinger equation
(see, e.g., Ref. 7).

a)Electronic mail: neh@kemi.dtu.dk.

In this work, we present a first implementation and elab-
oration on an OCT scheme for phase-only shaping which is
based on the approach sketched in Ref. 5.

We focus on control of photofragmentation in the weak-
field limit. With a fixed frequency distribution and hence pulse
energy, coherent control in the weak-field (one-photon) limit
exploits quantum interference in its purest form.3, 8 However,
when excitation out of a single eigenstate is considered and
direct fragmentation takes place within a dissociative contin-
uum of states, phase control of final state distributions of the
fragments is impossible for closed systems,9–12 although the
form of the nuclear wave packet can be controlled.13, 14

Recently, we showed that for indirect photofragmenta-
tion in the weak-field limit, transient fragment distributions
(such as the dissociation probability and momentum distribu-
tion) can be changed by a phase-modulated pulse with a fixed
bandwidth.15 This result can be considered as a supplement
to the one-photon no control result of Brumer and Shapiro.9

It applies only to transient fragment distributions, that is, no
control is observed in the long-time limit of an indirect frag-
mentation such as NaI → (NaI)* → Na + I, when the quasi-
bound complex (NaI)* has disappeared. In our previous work,
we considered only a simple phase modulation leading to lin-
early chirped laser pulses. In this work, we will extend this
study and optimize the effect of a phase-modulated pulse.

This paper is organized in the following way: Section II A
presents the algorithm for phase-only pulse shaping within the
framework of OCT. Section II B gives a brief summary of the
theoretical description of the indirect laser-induced fragmen-
tation of NaI. Numerical results and discussion are presented
in Sec. III. Finally, conclusions are given in Sec. IV.

II. THEORETICAL APPROACH

A. Phase-only pulse shaping

Within the electric-dipole approximation, the Hamil-
tonian for the interaction between a system and a plane-
polarized electric field takes the form

Ĥ (t) = Ĥ0 − μ̂E(t), (2)

0021-9606/2012/136(4)/044303/6/$30.00 © 2012 American Institute of Physics136, 044303-1
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where Ĥ0 is the Hamiltonian of the field-free system, μ̂ is
the projection of the dipole moment operator on the polar-
ization vector of the field, and E(t) is the electric field. The
time evolution of the system is given by the time-dependent
Schrödinger equation (¯ ≡ 1 in the following)

i
∂

∂t
|ψ(t)〉 = Ĥ (t)|ψ(t)〉, |ψ(0)〉 = |φi〉. (3)

Now the aim is to find the electric field E(t) which drives the
system from its initial state |ψ(0)〉 = |φi〉 to a state |ψ(T)〉,
which is as close as possible to a desired target state |φf〉.

By taking into account constraints on the external field,
optimal control can be formulated as the problem of maximiz-
ing an objective functional J of the electric field,5, 16 where

J = JS − α

∫ T

0
dt

|E(t)|2
s(t)

, (4)

with the system dependent part

JS = |〈ψ(T )|φf 〉|2 − 2Re

{
〈ψ(T )|φf 〉

×
∫ T

0
dt〈χ (t)|

(
iĤ (t) + ∂

∂t

)
|ψ(t)〉

}
. (5)

On the right-hand side of Eq. (5), the first term is the orig-
inal control objective, the second term is to ensure that the
time evolution follows the Schrödinger equation, Eq. (3), and
|χ〉 is the so-called Lagrange multiplier. The second term in
Eq. (4) represents constraints on the control field. α is a con-
stant positive Lagrange multiplier chosen to weight the signif-
icance of the pulse energy, and s(t) is a shape function which
enforces a smooth switch on and off of the field.

It can be shown that J is maximized when the following
equations are satisfied5, 16:

i
∂

∂t
|χ (t)〉 = Ĥ (t)|χ (t)〉, |χ (T )〉 = |φf 〉, (6)

where the real-valued control field is obtained from the real
part of the expression

Ec(t) = i
s(t)

α
〈ψ(t)|χ (t)〉〈χ (t)|μ̂|ψ(t)〉. (7)

The system of coupled equations, Eqs. (3), (6), and (7) are
solved using an iterative method.5 Due to the initial condi-
tions, Eqs. (3) and (6) correspond to a forward and a backward
propagation in time, respectively. The design of the optimal
pulse requires typically an intensive iteration process to mod-
ify the initial optical pulse to achieve the desired objective.

In iterations associated with the calculation of χ (t), the
electric field used for calculating the backward-propagating
wave function is taken from the real part of the control field
in Eq. (7), i.e., E ′

(t) = Re[E ′
c(t)]. For the implementation of

phase-only shaping into the computational optimization, we
have to decode the phase information from the field in Eq. (7).
First, the Fourier transformation of the pulse to the spectral
domain is performed by

E
′
(ω) = 1

2π

∫ ∞

−∞
E ′

c(t)eiωtdt, (8)

where E
′
(ω) is a complex function containing all the informa-

tion concerning the pulse and from which the complex E ′
c(t) in

Eq. (7) can be retrieved. Then the electric field E(t) in the time
domain for calculating the forward-propagating wave func-
tion ψ(t) can be obtained by

E(t) = 1

2π
Re

[∫ ∞

−∞
Ein(ω)eiφ(ω)e−iωtdω

]

= 1

2π
Re

[∫ ∞

−∞
Ein(ω)

E
′
(ω)

|E ′(ω)|e
−iωtdω

]
, (9)

where Ein(ω) is the predefined spectral distribution, which
in an experiment corresponds to the spectrum of laser pulse
that enters the pulse-shaping device. This phase-only shaping
scheme is similar to that sketched in Ref. 5, but is presented
here in a more detailed way. We assume that the optimized
phase-shaped pulse is generated from a Fourier transform lim-
ited (FTL) pulse that can be obtained by conventional laser
systems. The frequency distribution is therefore given by a
Gaussian

Ein(ω) = E0 exp

[
− ln 2

(
ω − ω0

	ω/2

)2]
, (10)

where E0, ω, ω0, and 	ω are the peak field strength, the
angular frequency, the center frequency, and the bandwidth
(FWHM) of the laser pulse, respectively.

For later reference, we note that to analyze the effect of
phase, the spectral phase φ(ω) in Eq. (9) is usually expanded
into a Taylor series around the center frequency ω0

φ(ω) = φ0 + (ω − ω0)φ1 + 1

2
(ω − ω0)2φ2

+1

6
(ω − ω0)3φ3 + · · · , (11)

where φk(k = 0, 1, 3, . . . ) denotes the expansion coefficient
of order k.

B. Quantum dynamic description of NaI→ Na+I

We consider here the laser-induced fragmentation of a di-
atomic molecule, NaI → Na + I via a quasi-bound (NaI)*
complex, due to a curve crossing between a bound and a re-
pulsive electronic state, see Fig. 1, where the relevant poten-
tial energy curves are from Ref. 17 (see also Ref. 18 and ref-
erences therein). In the diabatic representation, the molecular
Hamiltonian is expressed as

Ĥ0(R) =
∑
n=i,c

∫
dR|nR〉[T̂ + V̂nn(R)

]〈nR|

+
∫

dR
(|iR〉V̂ic(R)〈cR| + |cR〉V̂ci(R)〈iR|) ,

(12)

where |iR〉 = |i(R)〉|R〉 (|cR〉 = |c(R)〉|R〉) denotes the ionic
(covalent) state with eigenstate of the nuclear coordinate,
|R〉. The operators T̂ , V̂ii(R) (V̂cc(R)), and V̂ic(R) represent
the kinetic energy operator, the diabatic potential energy of
the ionic (covalent) state, and the coupling between the two
diabatic states, respectively. The transition dipole moment
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FIG. 1. Dissociation of NaI via non-adiabatic dynamics. (a) The dashed lines
indicate the non-crossing adiabatic potentials. (b) The function f(Rc, Rf, R) in
the projection operator of Eq. (14).

function for the interaction with the field is given in Ref. 19,
and the plane polarized field is assumed to be parallel to the
transition dipole moment.

In the present study, we want to optimize the effect of
a phase-modulated pulse on the probability of observing dis-
sociation in the Na+I channel. Under weak-field conditions,
population transfer from the ground state to the excited state
grows linearly with the intensity of the field, and is indepen-
dent of phase.15, 20 We assumed that the population transferred
to the excited state is a2, and thus the target state can be de-
fined by

|φf 〉 =
√

1 − a2 |ψ(0)〉 + a
Ôc|ψ(T )〉

‖ Ôc|ψ(T )〉‖ , (13)

where |ψ(0)〉 = |φi〉 is the initial vibrational ground state of
NaI. Ôc is a projection operator that will effectively suppress
the part of the wave packet in the coupling region and become
a constant of 1 in the asymptotic region of the covalent state,
where the wave packet can be regarded as representing disso-
ciated fragments. Thus, it can be chosen as

Ôc =
∫ ∞

0
dR|cR〉f (Rc,Rf , R)〈cR|, (14)

where

f (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < y,

sin2 π (x − y)

2(z − y)
, y ≤ x ≤ z,

1, x > z,

(15)

with Rc = 9.5 Å and Rf = 10.0 Å. The function f(Rc, Rf, R) is
shown in Fig. 1(b).

The momentum distribution of the wave packet in the
covalent state is computed by Fourier transforming the wave

packet from position space to momentum space as


(p, t) = 1√
2π

∫ +∞

−∞
e−ipR〈cR|Ôc|ψ(R, t)〉dR. (16)

It should be noted that the projection operator also rep-
resents the relevant Franck-Condon window function when
the momentum distribution is probed via an ionization step.21

The details of the numerical method for solving the time-
dependent Schrödinger equation for this problem can be
found in our previous paper.15

III. RESULTS AND DISCUSSION

As a test, the initial input pulse is a FTL pulse (φ(ω) = 0),
centered at t = 0, with full width at half maximum (FWHM)
of 30 fs, and a center wavelength of 328 nm. This is a typical
pump wavelength used in experimental studies of NaI.17 The
intensity is 1.0 × 1011 W/cm2, such that the calculations are
performed in the weak-field regime15 (a2 = 0.017 in Eq. (13)).
The target time is set to T = 1000 fs, such that the wave packet
always stayed within the grid region. In Eq. (4), α = 1 and the
envelope function s(t) of the optimized laser pulse is taken to
be a Gaussian with center time at 0 fs and FWHM of 600 fs,
that is, field-free conditions are established at about 500 fs
after the center of the pulse.

The optimized pulse E(t) in Eq. (9) is designed to trans-
fer as much as possible of the population in the excited state
into the channel Na+I, at the target time. When we apply the
OCT algorithm, the main feature of the optimized pulse is a
pulse centered at negative times, i.e., it is essentially a time-
shifted version of the initial pulse. From the point of view of
the representation of the phase function in Eq. (11), we note
that according to the Fourier transform shift theorem, a linear
term in the spectral phase φ1 leaves the laser field envelope
unchanged, but shift the pulse in the time domain. This is a
rather trivial solution to the problem.

In the present study, we want to find a symmetric pulse
with center time at t = 0, so that we can directly compare the
results between shaped and unshaped pulses. Thus, we invoke
the constraint of an even phase function φ(ω − ω0) = φ(ω0

− ω), which implies that the phase in Eq. (9) can be obtained
by the following two approaches:

I : eiφ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

E′(ω)

|E′(ω)| , ω ≥ ω0,

E′(2ω0 − ω)

|E′(2ω0 − ω)| , ω < ω0,

(17)

or

II : eiφ(ω) =

⎧⎪⎪⎨
⎪⎪⎩

E′(ω)

|E′(ω)| , ω ≤ ω0,

E′(2ω0 − ω)

|E′(2ω0 − ω)| , ω > ω0,

(18)

Figure 2 shows the control objective 〈ψ(T )|Ôc|ψ(T )〉 as
a function of the number of iterations with the above phase
functions. We find that the part of the wave packet which has
moved into the asymptotic region under the constraint of con-
stant pulse energy is significantly enhanced by appropriately
modifying the spectral phase of a many-cycle femtosecond
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FIG. 2. The control objective 〈ψ(T )|Ôc|ψ(T )〉 as a function of the num-
ber of iterations with two different spectral phase functions; I from Eq. (17),
and II from Eq. (18). The result at the 0th iteration corresponds to the initial
unshaped transform-limited pulse.

laser pulse. Furthermore, the dissociation probability with
the first kind of phase function is smaller than that with the
second one. Attempts to minimize the control objective sug-
gests that the transform-limited pulse gives the smallest dis-
sociation probability.

Since, for phase-only shaping, we have to add constraints
on the standard OCT algorithm, we cannot expect a mono-
tonic convergence. In this case one can simply store the field
which gives the highest yield in the memory, and this field
is the result of the optimization. Although a proof of mono-
tonic convergence similar to that in Ref. 22 is not possible
here, as can be seen in Fig. 2, the obtained results show ini-
tially almost monotonic convergence. The control objective is

maximized after about 130 iterations (more precisely 130 for
pulse I and 135 iterations for pulse II). Subsequently, we ob-
serve that the control objective will decrease. At the maxi-
mum, the pulse has spread to the maximum temporal duration
allowed by the envelope function s(t) and in subsequent iter-
ations, the electric field outside the envelope will be cutoff,
leading to a reduced pulse energy.

The optimized laser pulses found by the OCT algorithm
are shown in Fig. 3, where the electric fields are described by
intensity and phase in the frequency and/or the time domain.
The temporal pulse width (FWHM) was stretched to 600 fs
from the initial FWHM of 30 fs (see Figs. 3(a) and 3(e)) and
the spectral intensities are, as expected, exactly unchanged af-
ter the pulse shaping (see Figs. 3(b) and 3(f)). The quadratic
term in Eq. (11) leads to a linear chirp of the pulse in the time
domain, which induces an increase of the pulse duration. It is
very interesting to note that the phases and the time-frequency
dependent representations show the main features of a lin-
early chirped laser pulse in the neighborhood of the center
frequency ω0. The phases are given in the range −π ≤ φ(ω)
≤ π , but it should be noted that exp [iφ(ω)] = exp [i(φ(ω) +
n2π )], where n is an integer. The optimized pulse by the first
spectral phase function mainly consists of a positive chirped
pulse (see Fig. 3(c) and 3(d)), and the second one is similar to
a negative chirped pulse (see Fig. 3(g) and 3(h)). Higher order
phase modulation is, however, also observed.

In our previous work,15 we considered only linearly
chirped laser pulses and obtained similar enhancements of
the dissociation probability. However, it should be noted that
the FWHM of these pulses (i.e., 740 fs) was larger than the
600 fs of the optimized pulses in Fig. 3. Furthermore, one
could ask the question whether a result similar to that of
the optimized pulse, could have been obtained simply by
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FIG. 4. The momentum distributions with two kinds of phase-only shaped
pulses, I from Eq. (17), and II from Eq. (18), at t = 500 and t = 3000 fs,
respectively. FTL denotes the corresponding Fourier transform-limited pulse.

choosing a different linear chirping rate. This is not the case,
because with a pulse duration of 600 fs (as for the opti-
mized pulse), corresponding to a smaller linear spectral chirp,
a smaller enhancement of the dissociation probability would
have been obtained. Thus, the dissociation probability is about
10% smaller for a pure linear positive chirp compared to pulse
I and about 30% smaller for a pure linear negative chirp com-
pared to pulse II.

The experimental observation of these coherently con-
trolled transient fragment distributions should be feasible.
The detection of, for example, a transient dissociation prob-
ability was already demonstrated in the first papers on the
femtochemistry of NaI.17 A detection scheme for transient
momentum distributions has also been discussed.23 Figure 4

shows the momentum distributions at two different times with
the two kinds of phase defined in Eqs. (17) and (18). The ori-
gin of the characteristic structures in these distributions has
been discussed previously.24–26 It is very interesting to note
that the phase-only shaped pulses can change the relative im-
portance of the various momentum components, for example,
the low-energy components are enhanced with the first kind
of phase function, and the high-energy components are en-
hanced with the second one. This effect is clearly observed
even after 3 ps corresponding to about 3 vibrational periods
of the quasi-bound (NaI)* complex.

Again, it should be noted that the 600 fs FWHM of the
optimized pulse is shorter than the 740 fs of the linearly
chirped pulse in Ref. 15, but the effect of phase on the tran-
sient momentum distributions with the optimized laser pulse
is clearly larger than that with the linearly chirped pulses.
Thus, comparing, e.g., pulse I in Fig. 4(a) with the positively
chirped pulse in Fig. 6(a) of Ref. 15, we observe that the
suppression of high momenta is stronger with the optimized
pulse, implying that higher order phase modulation is also im-
portant for the optimization.

IV. CONCLUSIONS

In this work we presented—to the best of our
knowledge—the first numerical implementation of phase-
only shaped laser pulses within the quantum optimal control
theory of laser-molecule interaction. Furthermore, we imple-
mented a constraint which leads to symmetric pulses. We ap-
plied this approach to the weak-field photofragmentation of
NaI, which is an indirect fragmentation via a quasi-bound
complex (NaI)*. We showed that the transient dissociation
probability as well as the relative momentum distribution of
the fragments Na and I, can be substantially modified after
an optimization of the phases associated with the various fre-
quency components of the laser pulse. As expected, the effect
is larger than the one observed in our previous work15 where
only simple phase functions leading to linearly chirped pulses
were employed. As in our previous study,15 it should be em-
phasized that phase-only control in the weak-field limit is re-
stricted to transient fragment distribution. That is, no control
is observed in the long-time limit where the fragmentation is
completed.
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