10 research outputs found

    Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span.

    Get PDF
    Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were significantly quantified in livers of ad libitum, restriction- and re-fed rats, which summed up into 92% of the total protein mass of the cells. Compared to restriction, ad libitum cells contained significantly less mitochondrial catabolic enzymes and more cytosolic and ER HSP90 and HSP70 chaperones, which are hallmarks of heat- and chemically-stressed tissues. Following re-feeding, levels of HSPs nearly reached ad libitum levels. The quantitative and qualitative protein values indicated that the restriction regimen was a least stressful condition that used minimal amounts of HSP-chaperones to maintain optimal protein homeostasis and sustain optimal life span. In contrast, the elevated levels of HSP-chaperones in ad libitum tissues were characteristic of a chronic stress, which in the long term could lead to early aging and shorter life span

    Roadmap on multimode photonics

    Get PDF
    Multimode devices and components have attracted considerable attention in the last years, and different research topics and themes have emerged very recently. The multimodality can be seen as an additional degree of freedom in designing devices, thus allowing for the development of more complex and sophisticated components. The propagation of different modes can be used to increase the fiber optic capacity, but also to introduce novel intermodal interactions, as well as allowing for complex manipulation of optical modes for a variety of applications. In this roadmap we would like to give to the readers a comprehensive overview of the most recent developments in the field, presenting contributions coming from different research topics, including optical fiber technologies, integrated optics, basic physics and telecommunications

    Roadmap on multimode photonics

    Get PDF
    Multimode devices and components have attracted considerable attention in the last years, and different research topics and themes have emerged very recently. The multimodality can be seen as an additional degree of freedom in designing devices, thus allowing for the development of more complex and sophisticated components. The propagation of different modes can be used to increase the fiber optic capacity, but also to introduce novel intermodal interactions, as well as allowing for complex manipulation of optical modes for a variety of applications. In this roadmap we would like to give to the readers a comprehensive overview of the most recent developments in the field, presenting contributions coming from different research topics, including optical fiber technologies, integrated optics, basic physics and telecommunications
    corecore