1,914 research outputs found

    Studying bone mineral density in young people: The complexity of choosing a pQCT reference database

    Get PDF
    BACKGROUND: Many chronic illnesses affect bone health, and commonly lead to mineralization abnormalities in young people. As cortical and trabecular bone may be differentially affected in certain diseases, an imaging technique that allows for detailed study of the bone structure is required. Peripheral quantitative computed tomography (pQCT) overcomes the limitations of dual energy X-ray absorptiometry (DXA) and is perhaps more widely available for use in research than bone biopsy. However, in contrast to DXA, where there are large reference datasets, this is not the case for pQCT. METHODS: Fifty-five children and young adults aged 7 to 30 years had the non-dominant tibia scanned at the 3% & 4% sites for trabecular bone mineral density and the 38% site for cortical bone mineral density and bone mineral content. Image acquisition and analysis was undertaken according to the protocols of two of the largest reference datasets for tibial pQCT. The Z-scores generated were compared to examine the differences between protocols and the differences from the expected median of zero in a healthy population. RESULTS: The trabecular bone mineral density Z-scores generated by the two protocols were similar. The same was true for cortical mineral content Z-scores at the 38% site. Cortical bone mineral density was significantly different between protocols and likely affected by differences in the ethnicity of our cohort compared to the reference datasets. Only one reference dataset extended from childhood to young adulthood. Only trabecular bone mineral density, periosteal and endosteal circumference Z-scores from one methodology were not significantly biased when tested for deviation of the median from zero. CONCLUSIONS: pQCT is a useful tool for studying trabecular and cortical compartments separately but, there are variations in pQCT scanning protocols, analysis methodology, and a paucity of reference data. Reference datasets may not be generalizable to local study populations, even when analysed using identical analysis protocols

    Chronic Mineral Dysregulation Promotes Vascular Smooth Muscle Cell Adaptation and Extracellular Matrix Calcification

    Get PDF
    In chronic kidney disease (CKD) vascular calcification occurs in response to deranged calcium and phosphate metabolism and is characterized by vascular smooth muscle cell (VSMC) damage and attrition. To gain mechanistic insights into how calcium and phosphate mediate calcification, we used an ex vivo model of human vessel culture. Vessel rings from healthy control subjects did not accumulate calcium with long-term exposure to elevated calcium and/or phosphate. In contrast, vessel rings from patients with CKD accumulated calcium; calcium induced calcification more potently than phosphate (at equivalent calcium-phosphate product). Elevated phosphate increased alkaline phosphatase activity in CKD vessels, but inhibition of alkaline phosphatase with levamisole did not block calcification. Instead, calcification in CKD vessels most strongly associated with VSMC death resulting from calcium- and phosphate-induced apoptosis; treatment with a pan-caspase inhibitor ZVAD ameliorated calcification. Calcification in CKD vessels was also associated with increased deposition of VSMC-derived vesicles. Electron microscopy confirmed increased deposition of vesicles containing crystalline calcium and phosphate in the extracellular matrix of dialysis vessel rings. In contrast, vesicle deposition and calcification did not occur in normal vessel rings, but we observed extensive intracellular mitochondrial damage. Taken together, these data provide evidence that VSMCs undergo adaptive changes, including vesicle release, in response to dysregulated mineral metabolism. These adaptations may initially promote survival but ultimately culminate in VSMC apoptosis and overt calcification, especially with continued exposure to elevated calcium

    A dedicated vascular access clinic for children on haemodialysis: Two years' experience

    Get PDF
    BACKGROUND: Arteriovenous fistula (AVF) formation for long-term haemodialysis in children is a niche discipline with little data for guidance. We developed a dedicated Vascular Access Clinic that is run jointly by a transplant surgeon, paediatric nephrologist, dialysis nurse and a clinical vascular scientist specialised in vascular sonography for the assessment and surveillance of AVFs. We report the experience and 2-year outcomes of this clinic. METHODS: Twelve new AVFs were formed and 11 existing AVFs were followed up for 2 years. All children were assessed by clinical and ultrasound examination. RESULTS: During the study period 12 brachiocephalic, nine basilic vein transpositions and two radiocephalic AVFs were followed up. The median age (interquartile range) and weight of those children undergoing new AVF creation were 9.4 (interquartile 3-17) years and 26.9 (14-67) kg, respectively. Pre-operative ultrasound vascular mapping showed maximum median vein and artery diameters of 3.0 (2-5) and 2.7 (2.0-5.3) mm, respectively. Maturation scans 6 weeks after AVF formation showed a median flow of 1277 (432-2880) ml/min. Primary maturation rate was 83 % (10/12). Assisted maturation was 100 %, with two patients requiring a single angioplasty. For the 11 children with an existing AVF the maximum median vein diameter was 14.0 (8.0-26.0) mm, and the median flow rate was 1781 (800-2971) ml/min at a median of 153 weeks after AVF formation. Twenty-two AVFs were used successfully for dialysis, a median kt/V of 1.97 (1.8-2.9), and urea reduction ratio of 80.7 % (79.3-86 %) was observed. One child was transplanted before the AVF was used. CONCLUSIONS: A multidisciplinary vascular clinic incorporating ultrasound assessment is key to maintaining young children on chronic haemodialysis via an AVF

    GGN repeat length and GGN/CAG haplotype variations in the androgen receptor gene and prostrate cancer risk in south Indian men

    Get PDF
    The ethnic variation in the GGN and CAG microsatellites of the androgen receptor (AR) gene suggests their role in the substantial racial difference in prostate cancer risk. Hence, we performed a casecontrol study to assess whether GGN repeats independently or in combination with CAG repeats were associated with prostate cancer risk in South Indian men. The repeat lengths of the AR gene determined by Gene scan analysis, revealed that men with GGN repeats £21 had no significant risk compared to those with >21 repeats (OR 0.91 at 95% CI-0.52–1.58). However, when CAG repeats of our earlier study was combined with the GGN repeat data, the cases exhibited significantly higher frequency of the haplotypes CAG £19/GGN £21 (OR-5.2 at 95% CI-2.17– 12.48, P 21(OR-6.9 at 95%CI-2.85–17.01, P < 0.001) compared to the controls. No significant association was observed between GGN repeats and prostate-specific antigen levels and the age at diagnosis. Although a trend of short GGN repeats length in high-grade was observed, it was not significant (P = 0.09). Overall, our data reveals that specific GGN/CAG haplotypes (CAG £19/GGN £21 and CAG £19/GGN > 21) of AR gene increase the risk of prostate cancer and thus could serve as susceptibility marker for prostate cancer in South Indian men

    Breath-Hold Blood Oxygen Level-Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease

    Get PDF
    BACKGROUND AND PURPOSE: There is a critical need for a reliable and clinically feasible imaging technique that can enable prognostication and selection for revascularization surgery in children with Moyamoya disease. Blood oxygen level-dependent MR imaging assessment of cerebrovascular reactivity, using voluntary breath-hold hypercapnic challenge, is one such simple technique. However, its repeatability and reliability in children with Moyamoya disease are unknown. The current study sought to address this limitation. MATERIALS AND METHODS: Children with Moyamoya disease underwent dual breath-hold hypercapnic challenge blood oxygen level-dependent MR imaging of cerebrovascular reactivity in the same MR imaging session. Within-day, within-subject repeatability of cerebrovascular reactivity estimates, derived from the blood oxygen level-dependent signal, was computed. Estimates were associated with demographics and intellectual function. Interrater reliability of a qualitative and clinically applicable scoring scheme was assessed. RESULTS: Twenty children (11 males; 12.1 ± 3.3 years) with 30 MR imaging sessions (60 MR imaging scans) were included. Repeatability was "good" on the basis of the intraclass correlation coefficient (0.70 ± 0.19). Agreement of qualitative scores was "substantial" (κ = 0.711), and intrarater reliability of scores was "almost perfect" (κ = 0.83 and 1). Younger participants exhibited lower repeatability (P = .027). Repeatability was not associated with cognitive function (P > .05). However, abnormal cerebrovascular reactivity was associated with slower processing speed (P = .015). CONCLUSIONS: Breath-hold hypercapnic challenge blood oxygen level-dependent MR imaging is a repeatable technique for the assessment of cerebrovascular reactivity in children with Moyamoya disease and is reliably interpretable for use in clinical practice. Standardization of such protocols will allow further research into its application for the assessment of ischemic risk in childhood cerebrovascular disease

    The role of TRPC6 calcium channels and P2 purinergic receptors in podocyte mechanical and metabolic sensing

    Get PDF
    Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy. © 2021 The Author(s)
    • …
    corecore