154 research outputs found

    Prediction of Cellular Identities from Trajectory and Cell Fate Information

    Full text link
    Determining cell identities in imaging sequences is an important yet challenging task. The conventional method for cell identification is via cell tracking, which is complex and can be time-consuming. In this study, we propose an innovative approach to cell identification during early C. elegans\textit{C. elegans} embryogenesis using machine learning. Cell identification during C. elegans\textit{C. elegans} embryogenesis would provide insights into neural development with implications for higher organisms including humans. We employed random forest, MLP, and LSTM models, and tested cell classification accuracy on 3D time-lapse confocal datasets spanning the first 4 hours of embryogenesis. By leveraging a small number of spatial-temporal features of individual cells, including cell trajectory and cell fate information, our models achieve an accuracy of over 91%, even with limited data. We also determine the most important feature contributions and can interpret these features in the context of biological knowledge. Our research demonstrates the success of predicting cell identities in time-lapse imaging sequences directly from simple spatio-temporal features

    Spatio-angular fluorescence microscopy III. Constrained angular diffusion, polarized excitation, and high-NA imaging

    Full text link
    We investigate rotational diffusion of fluorescent molecules in angular potential wells, the excitation and subsequent emissions from these diffusing molecules, and the imaging of these emissions with high-NA aplanatic optical microscopes. Although dipole emissions only transmit six low-frequency angular components, we show that angular structured illumination can alias higher frequency angular components into the passband of the imaging system. We show that the number of measurable angular components is limited by the relationships between three time scales: the rotational diffusion time, the fluorescence decay time, and the acquisition time. We demonstrate our model by simulating a numerical phantom in the limits of fast angular diffusion, slow angular diffusion, and weak potentials.Comment: 22 pages, 5 figure

    Phase Diverse Phase Retrieval for Microscopy: Comparison of Gaussian and Poisson Approaches

    Full text link
    Phase diversity is a widefield aberration correction method that uses multiple images to estimate the phase aberration at the pupil plane of an imaging system by solving an optimization problem. This estimated aberration can then be used to deconvolve the aberrated image or to reacquire it with aberration corrections applied to a deformable mirror. The optimization problem for aberration estimation has been formulated for both Gaussian and Poisson noise models but the Poisson model has never been studied in microscopy nor compared with the Gaussian model. Here, the Gaussian- and Poisson-based estimation algorithms are implemented and compared for widefield microscopy in simulation. The Poisson algorithm is found to match or outperform the Gaussian algorithm in a variety of situations, and converges in a similar or decreased amount of time. The Gaussian algorithm does perform better in low-light regimes when image noise is dominated by additive Gaussian noise. The Poisson algorithm is also found to be more robust to the effects of spatially variant aberration and phase noise. Finally, the relative advantages of re-acquisition with aberration correction and deconvolution with aberrated point spread functions are compared.Comment: 13 pages, 9 figure

    Single-fluorophore orientation determination with multiview polarized illumination : modeling and microscope design

    Get PDF
    Author Posting. © Optical Society of America, 2017. This article is posted here by permission of Optical Society of America for personal use, not for redistribution. The definitive version was published in Optics Express 25 (2017): 31309-31325, doi:10.1364/OE.25.031309.We investigate the use of polarized illumination in multiview microscopes for determining the orientation of single-molecule fluorescence transition dipoles. First, we relate the orientation of single dipoles to measurable intensities in multiview microscopes and develop an information-theoretic metric—the solid-angle uncertainty—to compare the ability of multiview microscopes to estimate the orientation of single dipoles. Next, we compare a broad class of microscopes using this metric—single- and dual-view microscopes with varying illumination polarization, illumination numerical aperture (NA), detection NA, obliquity, asymmetry, and exposure. We find that multi-view microscopes can measure all dipole orientations, while the orientations measurable with single-view microscopes is halved because of symmetries in the detection process. We also find that choosing a small illumination NA and a large detection NA are good design choices, that multiview microscopes can benefit from oblique illumination and detection, and that asymmetric NA microscopes can benefit from exposure asymmetry.National Institute of Health (NIH) (R01GM114274, R01EB017293)

    Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices

    Get PDF
    The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.Comment: Submitted for publicatio

    Clustered nuclei maintain autonomy and nucleocytoplasmic ratio control in a syncytium

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 27 (2016): 2000-2007, doi:10.1091/mbc.E16-02-0129.Nuclei in syncytia found in fungi, muscles, and tumors can behave independently despite cytoplasmic translation and the homogenizing potential of diffusion. We use a dynactin mutant strain of the multinucleate fungus Ashbya gossypii with highly clustered nuclei to assess the relative contributions of nucleus and cytoplasm to nuclear autonomy. Remarkably, clustered nuclei maintain cell cycle and transcriptional autonomy; therefore some sources of nuclear independence function even with minimal cytosol insulating nuclei. In both nuclear clusters and among evenly spaced nuclei, a nucleus’ transcriptional activity dictates local cytoplasmic contents, as assessed by the localization of several cyclin mRNAs. Thus nuclear activity is a central determinant of the local cytoplasm in syncytia. Of note, we found that the number of nuclei per unit cytoplasm was identical in the mutant to that in wild-type cells, despite clustered nuclei. This work demonstrates that nuclei maintain autonomy at a submicrometer scale and simultaneously maintain a normal nucleocytoplasmic ratio across a syncytium up to the centimeter scale.his work was supported by National Institutes of Health R01-GM081506 (A.S.G., S.E.R., and P.O.), the National Science Foundation GK-12 Program and the Neukom Institute at Dartmouth College (S.E.R.), the Alfred P. Sloan Foundation and National Science Foundation DMS-1351860 (M.R. and S.-S.C.), a National Institutes of Health Ruth L. Kirschstein National Research Service Award (T32-GM008185; S.-S.C.), and the Intramural Research Programs of the National Institutes of Health National Institute of Biomedical Imaging and Bioengineering Whitman Investigator and Grass Foundation Programs at the Marine Biological Laboratory at Woods Hole (A.K. and H.S.

    Visualizing calcium flux in freely moving nematode embryos

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Cell Press for personal use, not for redistribution. The definitive version was published in Biophysical Journal 112 (2017): 1975-1983, doi:10.1016/j.bpj.2017.02.035.The lack of physiological recordings from Caenorhabditis elegans embryos stands in stark contrast to the comprehensive anatomical and gene expression datasets already available. Using light-sheet fluorescence microscopy (LSFM) to address the challenges associated with functional imaging at this developmental stage, we recorded calcium dynamics in muscles and neurons and developed analysis strategies to relate activity and movement. In muscles, we found that the initiation of twitching was associated with a spreading calcium wave in a dorsal muscle bundle. Correlated activity in muscle bundles was linked with early twitching and eventual coordinated movement. To identify neuronal correlates of behavior, we monitored brain-wide activity with subcellular resolution and identified a particularly active cell associated with muscle contractions. Finally, imaging neurons of a well-defined adult motor circuit, we found that reversals in the eggshell correlated with calcium transients in AVA interneurons.E.A. and A.K. acknowledge support from the Grass Fellowship Program and D. C-R. and H.S. acknowledge the Whitman Fellowship program at MBL. This work was supported by the intramural research program of the National Institute of Biomedical Imaging and Bioengineering and NIH grants U01 HD075602 and R24OD016474 to D.C-R and A.K.2018-05-0
    corecore