4 research outputs found

    Hydrazide Mimics for Protein Lysine Acylation To Assess Nucleosome Dynamics and Deubiquitinase Action

    No full text
    A range of acyl-lysine (acyl-Lys) modifications on histones and other proteins have been mapped over the past decade but for most, their functional and structural significance remains poorly characterized. One limitation in the study of acyl-Lys containing proteins is the challenge of producing them or their mimics in site-specifically modified forms. We describe a cysteine alkylation-based method to install hydrazide mimics of acyl-Lys post-translational modifications (PTMs) on proteins. We have applied this method to install mimics of acetyl-Lys, 2-hydroxyisobutyryl-Lys, and ubiquityl-Lys that could be recognized selectively by relevant acyl-Lys modification antibodies. The acyl-Lys modified histone H3 proteins were reconstituted into nucleosomes to study nucleosome dynamics and stability as a function of modification type and site. We also installed a ubiquityl-Lys mimic in histone H2B and generated a diubiquitin analog, both of which could be cleaved by deubiquitinating enzymes. Nucleosomes containing the H2B ubiquityl-Lys mimic were used to study the SAGA deubiquitinating moduleā€™s molecular recognition. These results suggest that acyl-Lys mimics offer a relatively simple and promising strategy to study the role of acyl-Lys modifications in the function, structure, and regulation of proteins and protein complexes

    Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidaseā€‘1 in Cells

    No full text
    Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (<i>Hs</i>MetAP1)-selective inhibitors (<b>1</b>ā€“<b>4</b>), but all of them failed to inhibit cellular <i>Hs</i>MetAP1. Using MnĀ­(II) or ZnĀ­(II) to activate <i>Hs</i>MetAP1, we found that <b>1</b>ā€“<b>4</b> could only effectively inhibit purified <i>Hs</i>MetAP1 in the presence of physiologically unachievable concentrations of CoĀ­(II). In an effort to seek CoĀ­(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)Ā­quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited <i>Hs</i>MetAP1 without CoĀ­(II). Subsequently, we demonstrated that <b>11j</b>, an auxiliary metal-dependent inhibitor, effectively inhibited <i>Hs</i>MetAP1 in primary cells. This is the first report that an <i>Hs</i>MetAP1-selective inhibitor is effective against its target in cells

    Rapamycin-inspired macrocycles with new target specificity

    No full text
    Rapamycin and FK506 are macrocyclic natural products with an extraordinary mode of action, in which they form binary complexes with FK506-binding protein (FKBP) through a shared FKBP-binding domain before forming ternary complexes with their respective targets, mechanistic target of rapamycin (mTOR) and calcineurin, respectively. Inspired by this, we sought to build a rapamycin-like macromolecule library to target new cellular proteins by replacing the effector domain of rapamycin with a combinatorial library of oligopeptides. We developed a robust macrocyclization method using ring-closing metathesis and synthesized a 45,000-compound library of hybrid macrocycles (named rapafucins) using optimized FKBP-binding domains. Screening of the rapafucin library in human cells led to the discovery of rapadocin, an inhibitor of nucleoside uptake. Rapadocin is a potent, isoform-specific and FKBP-dependent inhibitor of the equilibrative nucleoside transporter 1 and is efficacious in an animal model of kidney ischaemia reperfusion injury. Together, these results demonstrate that rapafucins are a new class of chemical probes and drug leads that can expand the repertoire of protein targets well beyond mTOR and calcineurin.</p

    Optimization of the Potency and Pharmacokinetic Properties of a Macrocyclic Ghrelin Receptor Agonist (Part I): Development of Ulimorelin (TZP-101) from Hit to Clinic

    No full text
    High-throughput screening of Tranzyme Pharmaā€™s proprietary macrocycle library using the aequorin Ca<sup>2+</sup>-bioluminescence assay against the human ghrelin receptor (GRLN) led to the discovery of novel agonists against this G-protein coupled receptor. Early hits such as <b>1</b> (<i>K</i><sub>i</sub> = 86 nM, EC<sub>50</sub> = 134 nM) though potent in vitro displayed poor pharmacokinetic properties that required optimization. While such macrocycles are not fully rule-of-five compliant, principally due to their molecular weight and clogP, optimization of their pharmacokinetic properties proved feasible largely through conformational rigidification. Extensive SAR led to the identification of <b>2</b> (<i>K</i><sub>i</sub> = 16 nM, EC<sub>50</sub> = 29 nM), also known as ulimorelin or TZP-101, which has progressed to phase III human clinical trials for the treatment of postoperative ileus. X-ray structure and detailed NMR studies indicated a rigid peptidomimetic portion in <b>2</b> that is best defined as a nonideal type-Iā€² Ī²-turn. Compound <b>2</b> is 24% orally bioavailable in both rats and monkeys. Despite its potency, in vitro and in gastric emptying studies, <b>2</b> did not induce growth hormone (GH) release in rats, thus demarcating the GH versus GI pharmacology of GRLN
    corecore