7 research outputs found

    An estimate of Sumudu transforms for Boehmians

    Get PDF
    The space of Boehmians is constructed using an algebraic approach that utilizes convolution and approximate identities or delta sequences. A proper subspace can be identified with the space of distributions. In this paper, we first construct a suitable Boehmian space on which the Sumudu transform can be defined and the function space S can be embedded. In addition to this, our definition extends the Sumudu transform to more general spaces and the definition remains consistent for S elements. We also discuss the operational properties of the Sumudu transform on Boehmians and finally end with certain theorems for continuity conditions of the extended Sumudu transform and its inverse with respect to δ- and Δ-convergence

    Some remarks on the extended Hartley-Hilbert and Fourier-Hilbert transforms of Boehmians

    No full text
    We obtain generalizations of Hartley-Hilbert and Fourier-Hilbert transforms on classes of distributions having compact support. Furthermore, we also study extension to certain space of Lebesgue integrable Boehmians. New characterizing theorems are also established in an adequate performance

    On the exponential Radon transform and its extension to certain functions spaces

    Get PDF
    We investigate the exponential Radon transform on a certain function space of generalized functions. We establish certain space of generalized functions for the cited transform. The transform that is obtained is well defined. More properties of consistency, convolution, analyticity, continuity, and sufficient theorems have been established

    On diffraction Fresnel transforms for Boehmians

    No full text
    The theory of the diffraction Fresnel transform is extended to certain spaces of Schwartz distributions. In the context of Boehmian spaces, the diffraction Fresnel transform is obtained as a continuous function. Convergence with respect to δ and Δ is also defined

    Unified treatment of the Krätzel transformation for generalized functions

    Get PDF
    We discuss a generalization of the Krätzel transforms on certain spaces of ultradistributions. We have proved that the Krätzel transform of an ultradifferentiable function is an ultradifferentiable function and satisfies its Parseval's inequality. We also provide a complete reading of the transform constructing two desired spaces of Boehmians. Some other properties of convergence and continuity conditions and its inverse are also discussed in some detail
    corecore