26 research outputs found
Development and Performance of Kyoto's X-ray Astronomical SOI pixel (SOIPIX) sensor
We have been developing monolithic active pixel sensors, known as Kyoto's
X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for
next-generation X-ray astronomy satellites. The event trigger output function
implemented in each pixel offers microsecond time resolution and enables
reduction of the non-X-ray background that dominates the high X-ray energy band
above 5--10 keV. A fully depleted SOI with a thick depletion layer and back
illumination offers wide band coverage of 0.3--40 keV. Here, we report recent
progress in the X-ray SOIPIX development. In this study, we achieved an energy
resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the
frame readout mode, which allows us to clearly resolve Mn-K and
K. Moreover, we produced a fully depleted layer with a thickness of
. The event-driven readout mode has already been successfully
demonstrated.Comment: 7pages, 12figures, SPIE Astronomical Telescopes and Instrumentation
2014, Montreal, Quebec, Canada. appears as Proc. SPIE 9147, Space Telescopes
and Instrumentation 2014: Ultraviolet to Gamma Ra
Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems
Funding: This research was funded by the Generation Challenge Program (GCP) project G3008.06, “Targeting Drought-Avoidance Root Traits to Enhance Rice Productivity under Water-Limited Environments". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
次世代天文観測衛星のための低雑音高ダイナミックレンジSOIピクセルX線イメージセンサに関する研究
博士(工学)doctoral創造科学技術大学院静岡大学甲第1017号ET