6 research outputs found

    PRODRUG AS A NOVEL APPROACH OF DRUG DELIVERY- A REVIEW

    Get PDF
    Prodrugs are bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then exert the desired pharmacological effect. Prodrug design is a choice of approach in solving many of the problems like stability, toxicity, solubility, permeability and drug targeting that affect drug discovery and development. Prodrug design is fruitful approach for drug targeting by changing the physiochemical, biopharmaceutical or pharmacokinetic properties of drugs. About 10-14% of drugs approved worldwide can be classified as prodrugs. The present article takes a review of introduction, classification, applications of prodrug design in various areas of drug development and basic functional groups that are amenable to prodrug design.Keywords: Prodrugs, objectives, classification, application, functional groups, limitation

    A REVIEW ON PHARMACEUTICAL PROCESS VALIDATION OF SOLID DOSAGE FORM [TABLETS]

    Get PDF
    The article gives an introduction and general overview on process validation of pharmaceutical tablet manufacturing process. Process Validation is one of the important steps in achieving and maintaining the quality of final product. Process validation emphasizes the role of statistical tools and analyses, knowledge, detection, and control of variability and thus gives assurance on consistency of quality product. The validation study provides the accuracy, sensitivity, specificity and reproducibility of the established and documented test methods employed by the manufacturer. Thus, validation is an essential part of the quality assurance. This review examines the need for pharmaceutical validation, the various approaches, process and steps to be monitored during tablet manufacturing process. Key words: Process Validation, Types, Validation Stages, Guidelines and Process.Â

    A SHORT COMPILATION ON ZIKA VIRUS TRANSMISSION AND ITS COMPLICATION DURING PREGNANCY

    Get PDF
    Zika virus, a mosquito borne flavivirus transmitted primar­ily by Aedes aegypti mosquitoes is a pathogen affecting humans. These vectors also trans­mit dengue and chikungunya virus and are found throughout much of the world, including parts of the United States. An estimated 80% of persons infected with Zika virus are asymptomatic. Microcephaly is the greater risk for the infant born from the Zika Virus infected pregnant mother. This virus also causes neurological syndromes. Zika virus disease can often be diagnosed by performing reverse transcriptase-polymerase chain reaction (RT-PCR) on serum. Keywords: Zika Virus, Pregnancy, Microcephaly, Aedes aegypti mosquito, Brazil

    Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

    Get PDF
    Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis

    Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis

    No full text
    Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor superfamily, are important in whole-body energy metabolism. PPARs are classified into three isoforms, namely, PPARα, β/δ, and γ. They are collectively involved in fatty acid oxidation, as well as glucose and lipid metabolism throughout the body. Importantly, the three isoforms of PPARs have complementary and distinct metabolic activities for energy balance at a cellular and whole-body level. PPARs also act with other co-regulators to maintain energy homeostasis. When endogenous ligands bind with these receptors, they regulate the transcription of genes involved in energy homeostasis. However, the exact molecular mechanism of PPARs in energy metabolism remains unclear. In this review, we summarize the importance of PPAR signals in multiple organs and focus on the pivotal roles of PPAR signals in cellular and whole-body energy homeostasis

    Cytoprotective Roles of a Novel Compound, MHY-1684, against Hyperglycemia-Induced Oxidative Stress and Mitochondrial Dysfunction in Human Cardiac Progenitor Cells

    No full text
    Diabetic cardiomyopathy (DCM) is tightly linked to heart disorders and dysfunction or death of the cardiomyocytes including resident cardiac progenitor cells (CPCs) in diabetic patients. In order to restore loss of function of resident or transplanted CPCs, much research has focused on novel therapeutic strategies including the discovery of novel function-modulating factors such as reactive oxygen species (ROS) scavengers. Here, we developed and defined a novel antioxidant, MHY-1684, for enhancing the angiogenic potential of CPCs against ROS-related DCM. Short-term treatment with MHY-1684 restored ROS-induced CPC cell death. Importantly, MHY-1684 decreased hyperglycemia-induced mitochondrial ROS generation and attenuated hyperglycemia-induced mitochondrial fragmentation. We observed that the activation process of both Drp1 (phosphorylation at the site of Ser616) and Fis-1 is drastically attenuated when exposed to high concentrations of D-glucose with MHY-1684. Interestingly, phosphorylation of Drp1 at the site of Ser637, which is an inhibitory signal for mitochondrial fusion, is restored by MHY-1684 treatment, suggesting that this antioxidant may affect the activation and inhibition of mitochondrial dynamics-related signaling and mitochondrial function in response to ROS stress. In conclusion, our finding of the novel compound, MHY-1684, as an ROS scavenger, might provide an effective therapeutic strategy for CPC-based therapy against diabetic cardiomyopathy
    corecore