19 research outputs found
Molecular mechanisms of the juvenile form of Batten disease: important role of MAPK signaling pathways (ERK1/ERK2, JNK and p38) in pathogenesis of the malady
Abstract Background Mutations in the CLN3 gene lead to so far an incurable juvenile-onset neuronal ceroid lipofuscinosis (JNCL) or Batten disease that starts at the age of 4â6Â years with a progressive retinopathy leading to blindness. Motor disturbances, epilepsy and dementia manifest during several following years. Most JNCL patients carry the same 1.02-kb deletion in the CLN3 gene, encoding an unusual transmembrane protein, CLN3 or battenin. Results Based on data of genome-wide expression profiling in CLN3 patients with different rate of the disease progression [Mol. Med., 2011, 17: 1253â1261] and our bioinformatic analysis of battenin protein-protein interactions in neurons we propose that CLN3 can function as a molecular chaperone for some plasma membrane proteins, being crucially important for their correct folding in endoplasmic reticulum. Changes in spatial structure of these membrane proteins lead to transactivation of the located nearby receptors. Particularly, CLN3 interacts with a subunit of Na/K ATPase ATP1A1 which changes its conformation and activates the adjacent epidermal growth factor receptor (EGFR). As a result, a large amount of erroneously activated EGFR generates MAPK signal cascades (ERK1/ERK2, JNKs and p38) from cell surface eventually causing neuronsâ death. Conclusions Molecular mechanism of the juvenile form of Batten disease (JNCL), which is based on the excessive activation of signaling cascades in a time of the radical increase of neuronal membranesâ area in the growing brain, have been proposed and substantiated. The primary cause of this phenomenon is the defective function of the CLN3 protein that could not act properly as molecular chaperone for some plasma membrane proteins in the endoplasmic reticulum. The incorrect three-dimensional structure of at least one such protein, ATP1A1, leads to unregulated spontaneous and repetitive activation of the SRC kinase that transactivates EGFR with the subsequent uncontrolled launch of various MAPK cascades. Possible ways of treatment of patients with JNCL have been suggested. Reviewers This article was reviewed by Konstantinos Lefkimmiatis, Eugene Koonin and Vladimir Poroikov
Mitochondria as a Possible Place for Initial Stages of Steroid Biosynthesis in Plants
With the aim of thorough comparison of steroidogenic systems of plants and animals, transgenic plants of Solanaceae family expressing CYP11A1 cDNA encoding cytochrome P450SCC of mammalian mitochondria were further analysed. Positive effect of CYP11A1 on resistance of the transgenic tobacco plants to the infection by fungal phytopathogene Botrytis cinerea was for the first time detected. Subtle changes in mitochondria of the transgenic Nicotiana tabacum plants expressing mammalian CYP11A1 cDNA were demonstrated by transmissive electron microscopy. The main components of the electron transfer chain of plant mitochondria were for the first time cloned and characterized. It was established that plants from the Solanacea family (tomato, tobacco and potato) contain two different genes with similar exon-intron structures (all contain 8 exons) encoding mitochondrial type ferredoxins (MFDX), and one gene for mitochondrial ferredoxin reductase (MFDXR). The results obtained point out on profound relatedness of electron transfer chains of P450-dependent monooxygenases in mammalian and plant mitochondria and support our previous findings about functional compatability of steroidogenic systems of Plantae and Animalia
Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae.
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit
Partners of Rpb8p, a Small Subunit Shared by Yeast RNA Polymerases I, II, and III
Rpb8p, a subunit common to the three yeast RNA polymerases, is conserved among eukaryotes and absent from noneukaryotes. Defective mutants were found at an invariant GGLLM motif and at two other highly conserved amino acids. With one exception, they are clustered on the Rpb8p structure. They all impair a two-hybrid interaction with a fragment conserved in the largest subunits of RNA polymerases I (Rpa190p), II (Rpb1p), and III (Rpc160p). This fragment corresponds to the pore 1 module of the RNA polymerase II crystal structure and bears a highly conserved motif (P.I.KP..LW.GKQ) facing the GGLLM motif of Rpb8p. An RNA polymerase I mutant (rpa190-G728D) at the invariant glycyl of P.I.KP..LW.GKQ provokes a temperature-sensitive defect. Increasing the gene dosage of another common subunit, Rpb6p, suppresses this phenotype. It also suppresses a conditional growth defect observed when replacing Rpb8p by its human counterpart. Hence, Rpb6p and Rpb8p functionally interact in vivo. These two subunits are spatially separated by the pore 1 module and may also be possibly connected by the disorganized N half of Rpb6p, not included in the present structure data. Human Rpb6p is phosphorylated at its N-terminal Ser2, but an alanyl replacement at this position still complements an rpb6-Î null allele. A two-hybrid interaction also occurs between Rpb8p and the product of orphan gene YGR089w. A ygr089-Î null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant