71 research outputs found
Green energy technology
Our environment is facing several serious challenges from energy utilization, such as fossil fuel exhaustion, air pollution, deteriorated atmospheric greenhouse effect, global warming, climate change, etc [...]</jats:p
Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae
© 2019 The Author(s). Background: Microalgae are one of the promising feedstock that consists of high carbohydrate content which can be converted into bioethanol. Pre-treatment is one of the critical steps required to release fermentable sugars to be used in the microbial fermentation process. In this study, the reducing sugar concentration of Chlorella species was investigated by pre-treating the biomass with dilute sulfuric acid and acetic acid at different concentrations 1%, 3%, 5%, 7%, and 9% (v/v). Results: 3,5-Dinitrosalicylic acid (DNS) method, FTIR, and GC-FID were employed to evaluate the reducing sugar concentration, functional groups of alcohol bonds and concentration of bioethanol, respectively. The two-way ANOVA results (p < 0.05) indicated that there was a significant difference in the concentration and type of acids towards bioethanol production. The highest bioethanol yield obtained was 0.28 g ethanol/g microalgae which was found in microalgae sample pre-treated with 5% (v/v) sulfuric acid while 0.23 g ethanol/g microalgal biomass was presented in microalgae sample pre-treated with 5% (v/v) acetic acid. Conclusion: The application of acid pre-treatment on microalgae for bioethanol production will contribute to higher effectiveness and lower energy consumption compared to other pre-treatment methods. The findings from this study are essential for the commercial production of bioethanol from microalgae
Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from 'mam nem', a fermented fish sauce
This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.10(6) CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45 degrees C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 +/- 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA
Prospects of Bioenergy Production From Organic Waste Using Anaerobic Digestion Technology: A Mini Review
naerobic digestion (AD) from organic waste has gained worldwide attention because it offers significant environmental and economic benefits. It can reduce the local waste through recycling which will conserve resources, reduce greenhouse gas emissions, and build economic resilience in the face of an uncertain future for energy production and waste disposal. The productive use of local waste through recycling conserves resources by reducing landfill space, the whole of life impacts of landfilling, and post-closure maintenance of landfills. Turning waste into a renewable energy source will assist the decarbonisation of the economy by reducing harmful emissions and pollutants. Therefore, this mini-review aims to summarise key factors and present valuable evidence for an efficient AD process. It also presents the pros and cons of different AD process to convert organic waste along with the reactor technologies. Besides, this paper highlights the challenges and the future perspective of the AD process. However, it is highlighted that for an effective and efficient AD process, appropriate temperature, pH, a strong inoculum to substrate ratio, good mixing and small particle sizes are important factors. The selection of suitable AD process and reactor is important because not all types of processes and reactors are not effective for processing organic waste. This study is of great importance for ongoing work on renewable energy generation from waste and provides important knowledge of innovative waste processing. Finally, it is recommended that the government should increase their support towards the AD technology and consider the unutilized significant potential of gaseous biofuel production
Progress in biomass torrefaction: Principles, applications and challenges
The development of biofuels has been considered as an important countermeasure to abate anthropogenic CO2 emissions, suppress deteriorated atmospheric greenhouse effect, and mitigate global warming. To produce biofuels from biomass, thermochemical conversion processes are considered as the most efficient routes wherein torrefaction has the lowest global warming potential. Combustion is the easiest way to consume biomass, which can be burned alone or co-fired with coal to generate heat and power. However, solid biomass fuels are not commonly applied in the industry due to their characteristics of hygroscopic nature and high moisture content, low bulk density and calorific value, poor grindability, low compositional homogeneity, and lower resistance against biological degradation. In recently developing biomass conversion technologies, torrefaction has attracted much attention since it can effectively upgrade solid biomass and produce coal-like fuel. Torrefaction is categorized into dry and wet torrefaction; the former can further be split into non-oxidative and oxidative torrefaction. Despite numerous methods developed, non-oxidative torrefaction, normally termed torrefaction, has a higher potential for practical applications and commercialization when compared to other methods. To provide a comprehensive review of the progress in biomass torrefaction technologies, this study aims to perform an in-depth literature survey of torrefaction principles, processes, systems, and to identify a current trend in practical torrefaction development and environmental performance. Moreover, the encountered challenges and perspectives from torrefaction development are underlined. This state-of-the-art review is conducive to the production and applications of biochar for resource utilization and environmental sustainability. To date, several kinds of reactors have been developed, while there is still no obviously preferred one as they simultaneously have pros and cons. Integrating torrefaction with other processes such as co-firing, gasification, pyrolysis, and ironmaking, etc., makes it more efficient and economically feasible in contrast to using a single process. By virtue of capturing carbon dioxide during the growth stage of biomass, negative carbon emissions can even be achieved from torrefied biomass
Inhibition of cell motility by troglitazone in human ovarian carcinoma cell line
<p>Abstract</p> <p>Background</p> <p>Troglitazone (TGZ) is a potential anticancer agent. Little is known about the effect of this agent on cancer cell migration.</p> <p>Methods</p> <p>Human ovarian carcinoma cell line, ES-2 cells were treated with various concentrations of TGZ. Cell migration was evaluated by wound-healing and Boyden chamber transwell experiments. PPARγ expression was blocked by PPARγ small interfering RNA. The effects of TGZ on phosphorylation of FAK, PTEN, Akt were assessed by immunoblotting using phospho-specific antibodies. The cellular distribution of paxillin, vinculin, stress fiber and PTEN was assessed by immunocytochemistry.</p> <p>Results</p> <p>TGZ dose- and time-dependently impaired cell migration through a PPARγ independent manner. TGZ treatment impaired cell spreading, stress fiber formation, tyrosine phosphorylation of focal adhesion kinase (FAK), and focal adhesion assembly in cells grown on fibronectin substratum. TGZ also dose- and time-dependently suppressed FAK autophosphorylation and phosphorylation of the C-terminal of PTEN (a phosphatase). At concentration higher than 10 μM, TGZ caused accumulation of PTEN in plasma membrane, a sign of PTEN activation.</p> <p>Conclusion</p> <p>These results indicate that TGZ can suppress cultured ES-2 cells migration. Our data suggest that the anti-migration potential of TGZ involves in regulations of FAK and PTEN activity.</p
Application of microwave plasma technology to convert carbon dioxide (CO<inf>2</inf>) into high value products: A review
The most important challenge faced by mankind in the 21st century is the global warming issues associated with the global energy demand. A sustainable and low carbon-based energy economy must be developed to reduce the dependency on non-renewable fossil fuels. Other than exploring renewable energy technology, such as solar, hydro, and wind, recycling and utilization of carbon dioxide (CO2) in synthesizing of high value-added products is also an alternative solution to mitigate climate change. As a potential technology, the plasma-based decomposition of CO2 has received a lot of interest, especially microwave discharge due to its outstanding ability to produce non-equilibrium plasma with high ionization power, to convert CO2 in an energy-efficient manner, and others. Hence, this paper is written to provide an overview of the microwave plasma technology on CO2 conversion. The basic theory of plasma technology has also been discussed to brief the readers, particularly the non-specialist, on the technical background. The parameters that affect the performance of the CO2 conversion process under microwave discharge such as pressure, microwave power supply, gas flow rate/pattern, co-reactant, and catalyst, are also highlighted. To sum up, the prospects and challenges for the commercialization of CO2 utilization, such as methane(CH4) with CO2 reforming in syngas production, using microwave plasma technology have also been emphasized
Kinetic and thermodynamic analysis of iron oxide reduction by graphite for CO<inf>2</inf> mitigation in chemical-looping combustion
© 2020 John Wiley & Sons Ltd Chemical-looping combustion (CLC) provides a platform to generate energy streams while mitigating CO2 using iron oxide as a carrier of oxygen. Through the reduction process, iron oxide experiences phase transformation to ultimately produce metallic iron. To understand iron oxide reduction characteristics and optimally design the fuel reactor, kinetic and thermodynamic analyses were proposed, utilizing graphite. This study aims to evaluate the reduction behavior under the non-isothermal process of various mixture ratios of hematite and graphite via thermogravimetric analysis with simultaneously evaluating evolved gases using a Fourier transform infrared spectrometer. The Coats-Redfern model was employed to approximate the kinetic and thermodynamic parameters which assessed the different reaction mechanisms together with the distributed activation energy model (DAEM). The results revealed that the hematite-to-graphite ratio of 4:1 had the highest reduction degree and had three distinct peaks representing three iron oxide reduction phases. The zero-order reaction mechanism agreed with the experimental results compared with other reaction models. The thermodynamic analysis showed an overall endothermic spontaneous reaction for the three phases which signified the direct reduction of the iron oxides. The DAEM result validated a stepwise reduction of iron oxides to metallic iron. The study aids the optimal design of the CLC fuel reactor for enhanced system performance
Algae-mediated antibiotic wastewater treatment: A critical review.
The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence. Unfortunately, conventional treatment techniques, such as those utilized in wastewater treatment plants, are not efficient for the treatment of wastewater containing antibiotic. Recently, algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal. Therefore, this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment. Algal removal mechanisms including bioadsorption, bioaccumulation, and biodegradation are discussed in detail, with using algae-bacteria consortia for antibiotic treatment, integration of algae with other microorganisms (fungi and multiple algal species), hybrid algae-based treatment and constructed wetlands, and the factors affecting algal antibiotic degradation comprehensively described and assessed. In addition, the use of algae as a precursor for the production of biochar is highlighted, along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes. Furthermore, recent novel approaches for enhancing antibiotic removal, such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed. Finally, some based on the critical review, key future research perspectives are proposed. Overall, this review systematically presents the current progress in algae-mediated antibiotic removal technologies, providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments
Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system
© 2019 Elsevier Ltd This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time
- …
