45 research outputs found
Local noise in a diffusive conductor
The control and measurement of local non-equilibrium configurations is of
utmost importance in applications on energy harvesting, thermoelectrics and
heat management in nano-electronics. This challenging task can be achieved with
the help of various local probes, prominent examples including superconducting
or quantum dot based tunnel junctions, classical and quantum resistors, and
Raman thermography. Beyond time-averaged properties, valuable information can
also be gained from spontaneous fluctuations of current (noise). From these
perspective, however, a fundamental constraint is set by current conservation,
which makes noise a characteristic of the whole conductor, rather than some
part of it. Here we demonstrate how to remove this obstacle and pick up a local
noise temperature of a current biased diffusive conductor with the help of a
miniature noise probe. This approach is virtually noninvasive and extends
primary local measurements towards strongly non-equilibrium regimes.Comment: minor revision, accepted in Scientific Report
Noise thermometry applied to thermoelectric measurements in InAs nanowires
We apply noise thermometry to characterize charge and thermoelectric
transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot
noise measurements identify elastic diffusive transport in our NWs with
negligible electron-phonon interaction. This enables us to set up a measurement
of the diffusion thermopower. Unlike in previous approaches, we make use of a
primary electronic noise thermometry to calibrate a thermal bias across the NW.
In particular, this enables us to apply a contact heating scheme, which is much
more efficient in creating the thermal bias as compared to conventional
substrate heating. The measured thermoelectric Seebeck coefficient exhibits
strong mesoscopic fluctuations in dependence on the back-gate voltage that is
used to tune the NW carrier density. We analyze the transport and
thermoelectric data in terms of approximate Mott's thermopower relation and to
evaluate a gate-voltage to Fermi energy conversion factor