7 research outputs found

    Microsatellite Markers Reveal Genetic Diversity and Relationships within a Melon Collection Mainly Comprising Asian Cultivated and Wild Germplasms

    No full text
    Melon, Cucumis melo L., is an important horticultural crop with abundant morphological variability, but the genetic diversity and relationships within wild and cultivated melons remain unclear to date. In this study, thick-skinned (TC) (cultivated subspecies melo), thin-skinned (TN) (cultivated subspecies agrestis), and wild accessions were analyzed for genetic diversity and relationships using 36 microsatellite markers. A total of 314 alleles were detected with a mean allelic number of 8.72 and polymorphism information content of 0.67. Cluster analysis of the accessions resulted in four distinct clusters (I, II, III, and IV) broadly matching with the TC, TN, and wild groups. Cluster I contained only two Indian wild accessions. Cluster II was consisted of 49 South Asian accessions, 34 wild accessions, and 15 TN accessions. Cluster III was a typical TC group including 51 multiorigin TC accessions and one wild accession. The remaining 88 accessions, including 75 TN accessions, 6 wild accessions, and 7 TC accessions, formed the cluster IV, and all the TN and wild accessions in this cluster were from China. These findings were also confirmed by Principal component analysis and STRUCTURE analysis. The South Asian subspecies agrestis accessions, wild and cultivated, had close genetic relationships with a distinctive genetic background. Chinese wild melons showed closeness to cultivated subspecies agrestis landraces and could be a return from the indigenous cultivated melons. The AMOVA and pairwise F statistics (FST) presented genetic differentiation among the three groups, with the strongest differentiation (FST = 0.380) between TC and TN melons. These results offer overall information on genetic diversity and affiliations within a variety of melon germplasms and favor efficient organization and utilization of these resources for the current breeding purpose

    Genetic Mapping of a Candidate Gene <i>ClIS</i> Controlling Intermittent Stripe Rind in Watermelon

    No full text
    Rind pattern is one of the most important appearance qualities of watermelon, and the mining of different genes controlling rind pattern can enrich the variety of consumer choices. In this study, a unique intermittent rind stripe was identified in the inbred watermelon line WT20. The WT20 was crossed with a green stripe inbred line, WCZ, to construct F2 and BC1 segregating populations and to analyze the genetic characterization of watermelon stripe. Genetic analysis showed that the intermittent stripe was a qualitative trait and controlled by a single dominant gene, ClIS. Fine mapping based on linkage analysis showed that the ClIS gene was located on the 160 Kb regions between 25.92 Mb and 26.08 Mb on watermelon chromosome 6. Furthermore, another inbred watermelon line with intermittent stripe, FG, was re-sequenced and aligned on the region of 160 Kb. Interestingly, only two SNP variants (T/C, A/T) were present in both WT20 and FG inbred lines at the same time. The two SNPs are located in 25,961,768 bp (T/C) and 25,961,773 bp (A/T) of watermelon chromosome 6, which is located in the promoter region of Cla019202. We speculate that Cla019202 is the candidate gene of ClIS which controls the intermittent stripe in watermelon. In a previous study, the candidate gene ClGS was proved to control dark green stripe in watermelon. According to the verification of the two genes ClIS and ClGS in 75 watermelon germplasm resources, we further speculate that the ClGS gene may regulate the color of watermelon stripe, while the ClIS gene regulates the continuity of watermelon stripe. The study provides a good entry point for studying the formation of watermelon rind patterns, as well as providing foundation insights into the breeding of special appearance quality in watermelon

    Additional file 1: of Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis

    No full text
    Figure S1. The motif distribution of dinucleotide (A), trinucleotide (B) and tetranucleotide (C) in watermelon. Figure S2. The chromosome position of the 32 SSR markers in watermelon. Figure S3. Delta K distribution across various clusters (K) as estimated by Structure Harvester. (PDF 833 kb

    Additional file 2: of Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis

    No full text
    Table S1. Watermelon Plant introduction accessions (PIs) used in the present study. Table S2. Genome wide SSR primers developed in the watermelon genome. Table S3. List of cross-species SSR markers between watermelon and cucumber identified by in silico PCR. Table S4. List of cross-species SSR markers between watermelon and melon identified by in silico PCR. Table S5. List of conserved SSR markers among watermelon, melon and cucumber genomes. Table S6. Syntenic blocks shared for cucumber, melon and watermelon genomes. Table S7. Information of fosmid clones used in fluorescence in situ hybridization (FISH). Table S8. List of 192 SSR primers used for polymorphism screening in watermelon. Table S9. Statistic of observed (Na) and effective number of alleles (Ne), observed (Ho) and expected heterozygosity (He), polymorphic information content (PIC) and Shannon’s information index (I) for 32 SSR markers. (XLSX 3673 kb
    corecore