10 research outputs found

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Additional file 5: of Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth

    No full text
    Mapping of GWAS-linked genes in placental gene coexpression network. Genes linked to GWAS-associated traits that are enriched in the placental gene coexpression network are listed alongside assigned modules and GWAS-linked traits. (CSV 58 kb

    The 15 facial landmarks extracted from 3D imaging.

    No full text
    <p>A, An average face from the population is used for illustration. B, mouth part of average face showing the mesh of the 3D facial imaging. The abbreviation for landmarks: Left external canthus (LExtCan); Left internal canthus (LIntCan); Right internal canthus (RIntCan); Right external canthus (RExtCan); Pronasale (Prn); Nasion point (Nsn); Left Alare (LAla); Right Alare (RAla); Subnasale (Sbn); Right lip corner (RLipCn); Left lip corner (LLipCn); Stomion (Stm); Upper lip point (ULipP); Lower lip point (LLipP); Chin point (ChiP).</p

    Facial shape comparisons among the genotype female groups of rs642961.

    No full text
    <p>The average shapes of the different genotype groups of rs642961 were compared pair-wisely, either for the point-wise distances, represented as color gradients in the left column; or for the contrast of the facial profile lines in the right column. The first, second and third rows denote the comparisons of CC/TT, CT/TT and CC/CT, respectively. In A, C and E, the higher intensity of the color gradient indicates greater point-wise distance. The first genotype group average face as the reference face (e.g, CC in the CC:TT comparison). The white color indicate no difference between reference face and compared face. The cold (or warm) colors indicate that the average shape of the reference face in a comparison is inside (or outside) of the compared face. In B, D and F, the red profile line is the average shape of the first genotype, and the blue line denotes the second genotype.</p

    Detecting Genetic Association of Common Human Facial Morphological Variation Using High Density 3D Image Registration

    Get PDF
    <div><p>Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the <i>IRF6</i> gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation.</p></div

    The distribution of individual mouth shapes along the PC1 mode and mean hyperline in females.

    No full text
    <p>Individual mouth shape was projected onto the two-dimensional space defined by the PC1 mode and the mean hyperline. Each point is annotated for the corresponding genotype. The PC1 and hyperline axes were plotted to intercept at the centroid (76.58, 0.45) of all female data points. The average mouth shape of all females (B) is plus or minus 3 times the sample standard deviation on either the PC1 mode or the hyperline. PC1+ (E) and PC1− (A) are the average shape +/− 3SD in PC1, and HL+ (C) and HL− (D) are the average shape +/− 3SD on the hyperline.</p

    The 5 SNPs of marginal significance in the first stage tests.

    No full text
    <p>“A”, the mutant is denoted by “B”. Tests that passed the nominal significance level of 0.1 are marked in bold. The significance level after Bonferroni correction is 0.00083. The two alleles in a SNP are given in the format of (wild type/derived type),e.g. (C/T), where the wild type is denoted by </p

    The 10 candidate SNPs selected from the literature.

    No full text
    <p>All the positions are using NCBI build 36.3 as reference. Chr chromosome. The two alleles in a SNP are given in the format of (wild type/derived type).</p

    Genome-wide DNA methylation associations with spontaneous preterm birth in US blacks: findings in maternal and cord blood samples

    No full text
    <p>Preterm birth (PTB) affects one in six Black babies in the United States. Epigenetics is believed to play a role in PTB; however, only a limited number of epigenetic studies of PTB have been reported, most of which have focused on cord blood DNA methylation (DNAm) and/or were conducted in white populations. Here we conducted, by far, the largest epigenome-wide DNAm analysis in 300 Black women who delivered early spontaneous preterm (sPTB, n = 150) or full-term babies (n = 150) and replicated the findings in an independent set of Black mother-newborn pairs from the Boston Birth Cohort. DNAm in maternal blood and/or cord blood was measured using the Illumina HumanMethylation450 BeadChip. We identified 45 DNAm loci in maternal blood associated with early sPTB, with a false discovery rate (FDR) <5%. Replication analyses confirmed sPTB associations for cg03915055 and cg06804705, located in the promoter regions of the <i>CYTIP</i> and <i>LINC00114</i> genes, respectively. Both loci had comparable associations with early sPTB and early medically-indicated PTB, but attenuated associations with late sPTB. These associations could not be explained by cell composition, gestational complications, and/or nearby maternal genetic variants. Analyses in the newborns of the 110 Black women showed that cord blood methylation levels at both loci had no associations with PTB. The findings from this study underscore the role of maternal DNAm in PTB risk, and provide a set of maternal loci that may serve as biomarkers for PTB. Longitudinal studies are needed to clarify temporal relationships between maternal DNAm and PTB risk.</p
    corecore