4 research outputs found

    Effect of Nanoparticle Weight on the Cellular Uptake and Drug Delivery Potential of PLGA Nanoparticles

    No full text
    Biodegradable and biocompatible polymeric nanoparticles (NPs) stand out as a key tool for improving drug bioavailability, reducing the inherent toxicity, and targeting the intended site. Most importantly, the ease of polymer synthesis and its derivatization to add functional properties makes them potentially ideal to fulfill the requirements for intended therapeutic applications. Among many polymers, US FDA-approved poly(l-lactic-co-glycolic) acid (PLGA) is a widely used biocompatible and biodegradable co-polymer in drug delivery and in implantable biomaterials. While many studies have been conducted using PLGA NPs as a drug delivery system, less attention has been given to understanding the effect of NP weight on cellular behaviors such as uptake. Here we discuss the synthesis of PLGA NPs with varying NP weights and their colloidal and biological properties. Following nanoprecipitation, we have synthesized PLGA NP sizes ranging from 60 to 100 nm by varying the initial PLGA feed in the system. These NPs were found to be stable for a prolonged period in colloidal conditions. We further studied cellular uptake and found that these NPs are cytocompatible; however, they are differentially uptaken by cancer and immune cells, which are greatly influenced by NPs’ weight. The drug delivery potential of these nanoparticles (NPs) was assessed using doxorubicin (DOX) as a model drug, loaded into the NP core at a concentration of 7.0 ± 0.5 wt % to study its therapeutic effects. The results showed that both concentration and treatment time are crucial factors for exhibiting therapeutic effects, as observed with DOX-NPs exhibiting a higher potency at lower concentrations. The observations revealed that DOX-NPs exhibited a higher cellular uptake of DOX compared to the free-DOX treatment group. This will allow us to reduce the recommended dose to achieve the desired effect, which otherwise required a large dose when treated with free DOX. Considering the significance of PLGA-based nanoparticle drug delivery systems, we anticipate that this study will contribute to the establishment of design considerations and guidelines for the therapeutic applications of nanoparticles

    Multiparametric Magneto-fluorescent Nanosensors for the Ultrasensitive Detection of Escherichia coli O157:H7

    No full text
    Enterohemorrhagic Escherichia coli O157:H7 presents a serious threat to human health and sanitation and is a leading cause in many food- and waterborne ailments. While conventional bacterial detection methods such as PCR, fluorescent immunoassays and ELISA exhibit high sensitivity and specificity, they are relatively laborious and require sophisticated instruments. In addition, these methods often demand extensive sample preparation and have lengthy readout times. We propose a simpler and more sensitive diagnostic technique featuring multiparametric magneto-fluorescent nanosensors (MFnS). Through a combination of magnetic relaxation and fluorescence measurements, our nanosensors are able to detect bacterial contamination with concentrations as little as 1 colony-forming unit (CFU). The magnetic relaxation property of our MFnS allow for sensitive screening at low target CFU, which is complemented by fluorescence measurements of higher CFU samples. Together, these qualities allow for the detection and quantification of broad-spectrum contaminations in samples ranging from aquatic reservoirs to commercially produced food

    Combination Therapy of NSCLC Using Hsp90 Inhibitor and Doxorubicin Carrying Functional Nanoceria

    No full text
    K-RAS driven non-small-cell lung cancer (NSCLC) represents a major cause of death among smokers. Recently, nanotechnology has introduced novel avenues for the diagnosis and personalized treatment options for cancer. Herein, we report a novel, multifunctional nanoceria platform loaded with a unique combination of two therapeutic drugs, doxorubicin (Doxo) and Hsp90 inhibitor ganetespib (GT), for the diagnosis and effective treatment of NSCLC. We hypothesize that the use of ganetespib synergizes and accelerates the therapeutic efficacy of Doxo via ROS production, while minimizing the potential cardiotoxicity of doxorubicin drug. Polyacrylic acid (PAA)-coated cerium oxide nanoparticles (PNC) were fabricated for the targeted combination therapy of lung cancers. Using “click” chemistry, the surface carboxylic acid groups of nanoceria were decorated with folic acid to target folate-receptor-overexpressing NSCLC. As a result of combination therapy, results showed more than 80% of NSCLC death within 48 h of incubation. These synergistic therapeutic effects were assessed via enhanced ROS, cytotoxicity, apoptosis, and migration assays. Overall, these results indicated that the targeted codelivery of Doxo and GT using nanoceria may offer an alternative combination therapy option for the treatment of undruggable NSCLC

    Design and Synthesis of New Sulfur-Containing Hyperbranched Polymer and Theranostic Nanomaterials for Bimodal Imaging and Treatment of Cancer

    No full text
    In this study, we have synthesized a new hyperbranched polyester polymer containing sulfur-pendants (HBPE-S) in the branching points. This HBPE-S polymer is composed of spherical shaped, aliphatic three-dimensional architecture with carboxylic acid groups on the surface. The presence of sulfur pendants in the polymeric cavities demonstrated an important role in the effective encapsulation of Bi-DOTA complexes ([Bi] = 5.21 μM), when compared to the previously reported polymer without sulfur pendants (HBPE, [Bi] = 1.07 × 10<sup>–3</sup> μM). Higher X-ray blocking capability and excellent X-ray contrast images were obtained from Bi-DOTA encapsulating HBPE-S polymeric nanoparticles when compared with that of HBPE nanoparticles. In addition, the HBPE-S polymer’s spherical structure with amphiphilic cavities allow for the successful encapsulation of antitumor drugs and optical dyes, indicating suitable for delivery of wide-range of theranostic agents for cancer diagnosis and treatment. Therapeutic drug taxol encapsulating, folic acid decorated HBPE-S-Fol nanoparticles showed more than 80% of lung carcinoma cell death within 24 h of incubation. Cell viability and microscopic experiments also confirmed for the targeted delivery, thereby minimizing toxicity to healthy tissues. Taken together, new HBPE-S polymer and multimodal theranostic nanoplatforms were synthesized with enhanced X-ray blocking capability for the effective cancer targeting and treatment monitoring
    corecore