1,187 research outputs found

    Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling

    Full text link
    Integrable couplings are associated with non-semisimple Lie algebras. In this paper, we propose a new method to generate new integrable systems through making perturbation in matrix spectral problems for integrable couplings, which is called the `completion process of integrable couplings'. As an example, the idea of construction is applied to the Ablowitz-Kaup-Newell-Segur integrable coupling. Each equation in the resulting hierarchy has a bi-Hamiltonian structure furnished by the component-trace identity

    A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network

    No full text
    Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone with favourable biocompatibility. However, natural grade PEEK-OPTIMA has shown insufficient bioactivity and limited bone integration. Bioactive PEEK composites (e.g., PEEK/calcium phosphates or Bioglass) and porous PEEK have been used to improve bone-implant interface of PEEK-based devices, but the bioactive phase distribution or porosity control is poor. In this paper, a novel method is developed to fabricate a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the HA (bioactive phase) distribution is computer-controlled within a PEEK matrix. This novel process results in complete interconnectivity of the HA network within a composite material, representing a superior advantage over alternative forms of product. The technique combines extrusion freeforming, a type of additive manufacturing (AM), and compression moulding. Compression moulding parameters, including pressure, temperature, dwelling time, and loading method together with HA microstructure were optimized by experimentation for successful biocomposite production. PEEK/HA composites with a range of HA were produced using static pressure loading to minimise air entrapment within PEEK matrix. In addition, the technique can also be employed to produce porous PEEK structures with controlled pore size and distribution

    The initiation, propagation, and effect of matrix microcracks in cross-ply and related laminates

    Get PDF
    Recently, a variational mechanics approach was used to determine the thermoelastic stress state in cracked laminates. Described here is a generalization of the variational mechanics techniques to handle other cross-ply laminates, related laminates, and to account for delaminations emanating from microcrack tips. Microcracking experiments on Hercules 3501-6/AS4 carbon fiber/epoxy laminates show a staggered cracking pattern. These results can be explained by the variational mechanics analysis. The analysis of delaminations emanating from microcrack tips has resulted in predictions about the structural and material variables controlling competition between microcracking and delamination failure modes

    Generic protease detection technology for monitoring periodontal disease

    No full text
    Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.<br/
    corecore