15 research outputs found
RRx-001, A novel dinitroazetidine radiosensitizer.
The 'holy grail' in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer-a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent "fixation" of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews
RRx-001, A novel dinitroazetidine radiosensitizer
The âholy grailâ in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizerâa systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent âfixationâ of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews
Telehealth System Based on the Ontology Design of a Diabetes Management Pathway Model in China: Development and Usability Study
BackgroundDiabetes needs to be under control through management and intervention. Management of diabetes through mobile health is a practical approach; however, most diabetes mobile health management systems do not meet expectations, which may be because of the lack of standardized management processes in the systems and the lack of intervention implementation recommendations in the management knowledge base.
ObjectiveIn this study, we aimed to construct a diabetes management care pathway suitable for the actual situation in China to express the diabetes management care pathway using ontology and develop a diabetes closed-loop system based on the construction results of the diabetes management pathway and apply it practically.
MethodsThis study proposes a diabetes management care pathway model in which the management process of diabetes is divided into 9 management tasks, and the Diabetes Care Pathway Ontology (DCPO) is constructed to represent the knowledge contained in this pathway model. A telehealth system, which can support the comprehensive management of patients with diabetes while providing active intervention by physicians, was designed and developed based on the DCPO. A retrospective study was performed based on the data records extracted from the system to analyze the usability and treatment effects of the DCPO.
ResultsThe diabetes management pathway ontology constructed in this study contains 119 newly added classes, 28 object properties, 58 data properties, 81 individuals, 426 axioms, and 192 Semantic Web Rule Language rules. The developed mobile medical system was applied to 272 patients with diabetes. Within 3 months, the average fasting blood glucose of the patients decreased by 1.34 mmol/L (P=.003), and the average 2-hour postprandial blood glucose decreased by 2.63 mmol/L (P=.003); the average systolic and diastolic blood pressures decreased by 11.84 mmHg (P=.02) and 8.8 mmHg (P=.02), respectively. In patients who received physician interventions owing to abnormal attention or low-compliance warnings, the average fasting blood glucose decreased by 2.45 mmol/L (P=.003), and the average 2-hour postprandial blood glucose decreased by 2.89 mmol/L (P=.003) in all patients with diabetes; the average systolic and diastolic blood pressure decreased by 20.06 mmHg (P=.02) and 17.37 mmHg (P=.02), respectively, in patients with both hypertension and diabetes during the 3-month management period.
ConclusionsThis study helps guide the timing and content of interactive interventions between physicians and patients and regulates physiciansâ medical service behavior. Different management plans are formulated for physicians and patients according to different characteristics to comprehensively manage various cardiovascular risk factors. The application of the DCPO in the diabetes management system can provide effective and adequate management support for patients with diabetes and those with both diabetes and hypertension
Recommended from our members
RRx-001, A novel dinitroazetidine radiosensitizer.
The 'holy grail' in radiation oncology is to improve the outcome of radiation therapy (RT) with a radiosensitizer-a systemic chemical/biochemical agent that additively or synergistically sensitizes tumor cells to radiation in the absence of significant toxicity. Similar to the oxygen effect, in which DNA bases modified by reactive oxygen species prevent repair of the cellular radiation damage, these compounds in general magnify free radical formation, leading to the permanent "fixation" of the resultant chemical change in the DNA structure. The purpose of this review is to present the origin story of the radiosensitizer, RRx-001, which emerged from the aerospace industry. The activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews
The immunomodulatory anticancer agent, RRx-001, induces an interferon response through epigenetic induction of viral mimicry
Abstract
Background
RRx-001, a dinitroazetidine derivative, is a novel anticancer agent currently in phase II clinical trials. It mediates immunomodulatory effects either directly through polarization of tumor associated macrophages or indirectly through vascular normalization and increased T-lymphocyte infiltration. With multiple additional mechanisms of action including upregulation of oxidative stress, depletion of GSH and NADPH, anti-angiogenesis and epigenetic modulation, RRx-001 is being studied as a radio- and chemo-sensitizer to resensitize tumors to prior therapy and to prime tumors to respond to radiation, chemotherapy and immunotherapy in combination therapy studies. Here, we identified another mechanism, viral mimicry, which refers to the \u201cunsilencing\u201d of epigenetically repressed viral genes present in the tumor that provokes an immune response and may contribute to the anticancer activity of RRx-001.
Results
RRx-001 inhibited the growth of colon cancer cells (HCT 116) and decreased levels of the DNA methyltransferases DNMT1 and DNMT3a in a time and dose-dependent manner. Treatment of HCT 116 cells with 0.5\ua0\u3bcM RRx-001 for 24\ua0h significantly increased transcripts of interferon (IFN)-responsive genes and this induction was sustained for up to 4\ua0weeks after transient exposure to RRx-001. ELISA assays showed that RRx-001 increased secretion of type I and III IFNs by HCT 116 cells, and these IFNs were confirmed to be bioactive. Transcription of endogenous retrovirus ERV-Fc2 and LTRs from the ERV-L family (MLT2B4 and MLT1C49) was induced by RRx-001. The induction of ERV-Fc2-env was through demethylation of ERV-Fc2 LTR as determined by methylation-specific polymerase chain reaction and combined bisulfite restriction analysis. Immunofluorescence staining with J2 antibody confirmed induction of double-stranded RNA.
Conclusions
Transient exposure of HCT 116 cells to low-dose RRx-001 induced transcription of silenced retroviral genes present in the cancer cell DNA with subsequent synthesis of IFN in response to this \u201cpseudo-pathogenic\u201d stimulus, mimicking an antiviral defense. RRx-001-mediated IFN induction may have the potential to improve the efficacy of immunotherapies as well as radiotherapy, standard chemotherapies and molecularly targeted agents when used in combination. The striking safety profile of RRx-001 in comparison to other more toxic epigenetic and immunomodulatory agents such as azacitidine makes it a leading candidate for such clinical applications
NO to cancer: The complex and multifaceted role of nitric oxide and the epigenetic nitric oxide donor, RRx-001
AbstractThe endogenous mediator of vasodilation, nitric oxide (NO), has been shown to be a potent radiosensitizer. However, the underlying mode of action for its role as a radiosensitizer â while not entirely understood â is believed to arise from increased tumor blood flow, effects on cellular respiration, on cell signaling, and on the production of reactive oxygen and nitrogen species (RONS), that can act as radiosensitizers in their own right. NO activity is surprisingly long-lived and more potent in comparison to oxygen. Reports of the effects of NO with radiation have often been contradictory leading to confusion about the true radiosensitizing nature of NO. Whether increasing or decreasing tumor blood flow, acting as radiosensitizer or radioprotector, the effects of NO have been controversial. Key to understanding the role of NO as a radiosensitizer is to recognize the importance of biological context. With a very short half-life and potent activity, the local effects of NO need to be carefully considered and understood when using NO as a radiosensitizer. The systemic effects of NO donors can cause extensive side effects, and also affect the local tumor microenvironment, both directly and indirectly. To minimize systemic effects and maximize effects on tumors, agents that deliver NO on demand selectively to tumors using hypoxia as a trigger may be of greater interest as radiosensitizers. Herein we discuss the multiple effects of NO and focus on the clinical molecule RRx-001, a hypoxia-activated NO donor currently being investigated as a radiosensitizer in the clinic
Recommended from our members
Targeting integrins and PI3K/Akt-mediated signal transduction pathways enhances radiation-induced anti-angiogenesis
The integrins and PI3K/Akt are important mediators of the signal transduction pathways involved in tumor angiogenesis and cell survival after exposure to ionizing radiation. Selective targeting of either integrins or PI3K/Akt can radiosensitize tumors. In this study, we tested the hypothesis that the combined inhibition of integrin alphanubeta3 by cRGD and PI3K/Akt by LY294002 would significantly enhance radiation-induced inhibition of angiogenesis by vascular endothelial cells. Treatment with cRGD inhibited the adhesion and tube formation of human umbilical vein endothelial cells (HUVECs). The inhibitory effect was further increased when cRGD and LY294002 were applied simultaneously. Both radiation and cRGD induced Akt phosphorylation, up-regulated COX2 expression, and increased PGE2 production in HUVECs. Treatment with LY294002 effectively inhibited radiation- and cRGD-induced Akt phosphorylation and up-regulation of COX2 and increased apoptosis of HUVECs. The combined use of cRGD and LY294002 enhanced radiation-induced cell killing. The clonogenic survival of HUVECs was decreased from 34% with 2 Gy radiation to 4% with these agents combined. These results demonstrate that combined use of ionizing radiation, cRGD and LY294002 inhibited multiple signaling transduction pathways involved in tumor angiogenesis and enhanced radiation-induced effects on vascular endothelial cells
The Development Of RRx-001, A Novel Nitric-Oxide-Mediated Epigenetically Active Anticancer Agent
Background: RRx-001 is a novel NO and hypoxia mediated anticancer agent with epigenetic activity. In the first-in-human, Phase I trial, 5/5 patients who progressed on RRx-001 treatment were resensitized to previously refractory therapy, hinting at a generalized resensitization effect. Aims: A randomized open-label multi-part, multi-center phase II trial of RRx-001 versus regorafenib (ROCKET) has commenced to explore the resensitization and/or âepisensitizationâ potential in irinotecan refractory tumors and its impact on overall survival. Methods: Patients with irinotecan-refractory metastatic colorectal cancer with an ECOG PS 0â1 who progressed on oxaliplatin-, and irinotecan-based regimens with or without bevacizumab, cetuximab or panitumumab are randomized 2:1 to receive RRx-001 16.5mg/m2 IV 1x/week or regorafenib 160mg orally 21 of 28 days until progression or unacceptable toxicity followed by treatment with refractory irinotecan-based therapies. Results: To date, 26 patients have been randomized with 18 patients evaluable for resensitization. Post RRx-001 patients demonstrated marked decreases in CEA in 12/13 patients as compared to 5 patients receiving regorafenib who were too systemically unwell to proceed to subsequent treatment. Progression free survival (ongoing) for RRx-001+irinotecan is 4.9 months compared 1.8 months on Regorafenib+irinotecan. Conclusion: Early results in the ROCKET study suggest that RRx-001-mediated resensitization to previously refractory therapies may have a generalized effect, independent of KRAS or p53 status. These early results are intriguing, suggesting improved QOL and overall survival over currently approved therapy in the chemotherapy refractory colorectal cancer