2,553 research outputs found

    Thermal entanglement of one-dimensional Heisenberg quantum spin chains in magnetic fields

    Full text link
    The thermal pairwise entanglement (TE) of the S=1/2 XY chain in a transverse magnetic field is exactly resolved by means of the Jordan-Wigner transformation. It is found that the TE vanishes at a common temperature Tc~0.4843J, which is irrelevant to the field. A thermal quantity is proposed to witness the entangled state. Furthermore, the TE of the S=1/2 antiferromagnetic-ferromagnetic (AF-F) Heisenberg chain is studied by the transfer-matrix renormalization group method.The TEs of the spins coupled by AF and F interactions are found to behave distinctively. The vanishing temperature of the field-induced TE of the spins coupled by F interactions is observed to change with the magnetic field. The results are further confirmed and analyzed by the mean-field theory.Comment: 5 pages, 3 figures, accepted by Phys. Rev.

    Fluctuation-Induced First Order Transition between the Quantum Hall Liquid and Insulator

    Full text link
    We study the phase transition between the quantum Hall liquid state and the insulating state within the framework of the Chern-Simons-Landau-Ginzburg theory of the quantum Hall effect. For the transition induced by a background periodic potential in the absence of disorder, the model is described by a relativistic scalar field coupled to the Chern-Simons gauge field. For this system, we show that the transition is of the first order, induced by the fluctuations of the gauge field, rather than second order, with statistical angle-dependent scaling exponent.Comment: 5 pages, REVTEX 3.0, two PostScript pictures appended, preprint SU-ITP-94-

    Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate

    Get PDF
    Aging is a significant risk factor for cancer in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered microenvironment is characteristic of prostatic aging in mice. Whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using comprehensive immune profiling and time-course analysis, we show that populations of T and B lymphocytes increase in the mouse prostate between 6 and 12 months of age. When comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective

    Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate

    Get PDF
    Aging is a significant risk factor for cancer in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered microenvironment is characteristic of prostatic aging in mice. Whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using comprehensive immune profiling and time-course analysis, we show that populations of T and B lymphocytes increase in the mouse prostate between 6 and 12 months of age. When comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective

    Finite-Size Studies on the SO(5) Symmetry of the Hubbard Model

    Full text link
    We present numerical evidence for the approximate SO(5) symmetry of the Hubbard model on a 10 site cluster. Various dynamic correlation functions involving the π\pi operators, the generators of the SO(5) algebra, are studied using exact diagonalisation, and are found to possess sharp collective peaks. Our numerical results also lend support on the interpretation of the recent resonant neutron scattering peaks in the YBCO superconductors in terms of the Goldstone modes of the spontaneously broken SO(5) symmetry.Comment: 4 pages, Rev-Tex, includes 2 eps figure

    Collective excitations in double-layer quantum Hall systems

    Full text link
    We study the collective excitation spectra of double-layer quantum-Hall systems using the single mode approximation. The double-layer in-phase density excitations are similar to those of a single-layer system. For out-of-phase density excitations, however, both inter-Landau-level and intra-Landau-level double-layer modes have finite dipole oscillator strengths. The oscillator strengths at long wavelengths for the latter transitions are shifted upward by interactions by identical amounts proportional to the interlayer Coulomb coupling. The intra-Landau-level out-of-phase mode has a gap when the ground state is incompressible except in the presence of spontaneous inter-layer coherence. We compare our results with predictions based on the Chern-Simons-Landau-Ginzburg theory for double-layer quantum Hall systems.Comment: RevTeX, 21 page

    Dynamics of an SO(5) symmetric ladder model

    Full text link
    We discuss properties of an exactly SO(5) symmetric ladder model. In the strong coupling limit we demonstrate how the SO(3)-symmetric description of spin ladders in terms of bond Bosons can be upgraded to an SO(5)-symmetric bond-Boson model, which provides a particularly simple example for the concept of SO(5) symmetry. Based on this representation we show that antiferro- magnetism on one hand and superconductivity on the other hand can be understood as condensation of either magnetic or charged Bosons into an RVB vacuum. We identify exact eigenstates of a finite cluster with general multiplets of the SO(5) group, and present numerical results for the single particle spectra and spin/charge correlation functions of the SO(5)-symmetric model and identify `fingerprints' of SO(5) symmetry in these. In particluar we show that SO(5) symmetry implies a `generalized rigid band behavior' of the photoemission spectrum, i.e. spectra for the doped case are rigorously identical to spectra for spin-polarized states at half-filling. We discuss the problem of adiabatic continuity between the SO(5) symmetric ladder and the actual t-J ladder and demonstrate the feasibility of a `Landau mapping' between the two models.Comment: Revtex-file, 16 pages with 15 eps-figures. Hardcopies of Figures (or the entire manuscript) obtainable by e-mail request to [email protected]

    Pi excitation of the t-J model

    Full text link
    In this paper, we present analytical and numerical calculations of the pi resonance in the t-J model. We show in detail how the pi resonance in the particle-particle channel couples to and appears in the dynamical spin correlation function in a superconducting state. The contribution of the pi resonance to the spin excitation spectrum can be estimated from general model-independent sum rules, and it agrees with our detailed calculations. The results are in overall agreement with the exact diagonalization studies of the t-J model. Earlier calculations predicted the correct doping dependence of the neutron resonance peak in the YBCO superconductor, and in this paper detailed energy and momentum dependence of the spin correlation function is presented. The microscopic equations of motion obtained within current formalism agree with that of the SO(5) nonlinear sigma model, where the pi resonance is interpreted as a pseudo Goldstone mode of the spontaneous SO(5) symmetry breaking.Comment: 33 pages, LATEX, 14 eps fig

    Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds

    Full text link
    Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and experimentally realized in a quantum wells based on binary semiconductor HgTe[1-3]. QSH state and topological insulators are the new states of quantum matter interesting both for fundamental condensed matter physics and material science[1-11]. Many of Heusler compounds with C1b structure are ternary semiconductors which are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the band gap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by lattice parameter) and the magnitude of spin-orbit coupling (by the atomic charge). Based on the first-principle calculations we demonstrate that around fifty Heusler compounds show the band inversion similar to HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantum well structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare earth element Ln which can realize additional properties ranging from superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors.Comment: 20 pages, 5 figure

    Duality and Universality for the Chern-Simons bosons

    Full text link
    By mapping the relativistic version of the Chern-Simons-Landau-Ginzburg theory in 2+1 dimensions to the 3D lattice Villain x-y model coupled with the Chern-Simons gauge field, we investigate phase transitions of Chern-Simons bosons in the limit of strong coupling. We construct algebraically exact duality and flux attachment transformations of the lattice theories, corresponding to analogous transformations in the continuum limit. These transformations are used to convert the model with arbitrary fractional Chern-Simons coefficient α\alpha to a model with α\alpha either zero or one. Depending on this final value of α\alpha, the phase transition in the original model is either in the universality class of the 3D x-y model or a ``fermionic'' universality class, unless the irrelevant corrections of cubic and higher power in momenta render the transition of the first order.Comment: 14 two-column pages, revtex 3.0, multicol and epsf.sty (optional), one PostScript figure, Submitted to Phys. Rev. B The changes intended to simplify the arguments and eliminate logical gaps. We also show how the filling factor ν\nu is changed by the duality transformatio
    corecore