22 research outputs found

    Absence of Membrane Phosphatidylcholine Does Not Affect Virulence and Stress Tolerance Phenotypes in the Opportunistic Pathogen Pseudomonas aeruginosa

    Get PDF
    During growth in presence of choline, both laboratory and clinical Pseudomonas aeruginosa strains synthesize phosphatidylcholine (PC), and PC makes up ∌4% of the total membrane phospholipid content. In all the strains tested, PC synthesis occurred only when choline is provided exogenously. Mutants defective in synthesis of PC were generated in the strain backgrounds PAO1 and PA14. Minimum inhibitory concentration studies testing sensitivity of PC-deficient strains towards various antibiotics and cationic antimicrobial peptides revealed no differences as compared to wild-type strains. Mutants incapable of synthesizing PC were also found to be unaffected in motility and biofilm formation on abiotic surfaces, colonization of biotic surfaces and virulence in a mouse infection model. A global phenotypic microarray was further used to identify conditions wherein membrane PC may play a role of in P. aeruginosa. No culture conditions were identified wherein wild-type and PC-deficient mutants showed phenotypic differences. Membrane PC may serve a highly specific role during P. aeruginosa interactions with its eukaryotic hosts based on all the clinical strains tested retaining the ability to synthesize it during availability of choline

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the United States in 1994-1995.

    No full text
    Two main mechanisms of macrolide resistance have been described in erythromycin-resistant Streptococcus pneumoniae (ERSP): a ribosomal methylase, ErmAM, and a macrolide efflux pump, MefE. In this study, we examined the prevalence of these mechanisms in 114 clinical isolates of ERSP from a 30-center study conducted in the United States between November 1994 and April 1995. The isolates were screened by polymerase chain reaction for the presence of known macrolide resistance genes. Seventy (61%) ERSP contained the macrolide efflux gene (mefE), whereas 36 isolates (32%) contained the biosomal methylase gene (ermAM). Isolates that were ermAM-positive had constitutive macrolide resistance. The minimum inhibitory concentrations (for which 90% of isolates were susceptible) of clarithromycin for the efflux-positive strains were much lower than those for the ermAM-positive strains (4 microg/mL vs. >128 microg/mL, respectively). The efflux mechanism is the predominant form of macrolide resistance in the United States
    corecore