8,309 research outputs found
Stabilization of grid frequency through dynamic demand control
Frequency stability in electricity networks is essential to the maintenance of supply quality and security. This paper investigates whether a degree of built-in frequency stability could be provided by incorporating dynamic demand control into certain consumer appliances. Such devices would monitor system frequency (a universally available indicator of supply-demand imbalance) and switch the appliance on or off accordingly, striking a compromise between the needs of the appliance and the grid. A simplified computer model of a power grid was created incorporating aggregate generator inertia, governor action and load-frequency dependence plus refrigerators with dynamic demand controllers. Simulation modelling studies were carried out to investigate the system's response to a sudden loss of generation, and to fluctuating wind power. The studies indicated a significant delay in frequency-fall and a reduced dependence on rapidly deployable backup generation
Automated reduction of instantaneous flow field images
An automated data reduction system for the analysis of interference fringe patterns obtained using the particle image velocimetry technique is described. This system is based on digital image processing techniques that have provided the flexibility and speed needed to obtain more complete automation of the data reduction process. As approached here, this process includes scanning/searching for data on the photographic record, recognition of fringe patterns of sufficient quality, and, finally, analysis of these fringes to determine a local measure of the velocity magnitude and direction. The fringe analysis as well as the fringe image recognition are based on full frame autocorrelation techniques using parallel processing capabilities
Cryptanalyzing a discrete-time chaos synchronization secure communication system
This paper describes the security weakness of a recently proposed secure
communication method based on discrete-time chaos synchronization. We show that
the security is compromised even without precise knowledge of the chaotic
system used. We also make many suggestions to improve its security in future
versions.Comment: 11 pages, 3 figures, latex forma
Hard limits on the postselectability of optical graph states
Coherent control of large entangled graph states enables a wide variety of
quantum information processing tasks, including error-corrected quantum
computation. The linear optical approach offers excellent control and
coherence, but today most photon sources and entangling gates---required for
the construction of large graph states---are probabilistic and rely on
postselection. In this work, we provide proofs and heuristics to aid
experimental design using postselection. We derive a fundamental limitation on
the generation of photonic qubit states using postselected entangling gates:
experiments which contain a cycle of postselected gates cannot be postselected.
Further, we analyse experiments that use photons from postselected photon pair
sources, and lower bound the number of classes of graph state entanglement that
are accessible in the non-degenerate case---graph state entanglement classes
that contain a tree are are always accessible. Numerical investigation up to
9-qubits shows that the proportion of graph states that are accessible using
postselection diminishes rapidly. We provide tables showing which classes are
accessible for a variety of up to nine qubit resource states and sources. We
also use our methods to evaluate near-term multi-photon experiments, and
provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47
references, and a supplementary material of 1741 words, 2 figures, 1 table,
and a Mathematica code listin
- …