313 research outputs found
White matter development from birth to 6 years of age: A longitudinal study
Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods
Stabilizer notation for Spekkens' toy theory
Spekkens has introduced a toy theory [Phys. Rev. A, 75, 032110 (2007)] in
order to argue for an epistemic view of quantum states. I describe a notation
for the theory (excluding certain joint measurements) which makes its
similarities and differences with the quantum mechanics of stabilizer states
clear. Given an application of the qubit stabilizer formalism, it is often
entirely straightforward to construct an analogous application of the notation
to the toy theory. This assists calculations within the toy theory, for example
of the number of possible states and transformations, and enables
superpositions to be defined for composite systems.Comment: 7+4 pages, 5 tables. v2: Clarifications added and typos fixed in
response to referee comment
Are There Quantum Effects Coming from Outside Space-time? Nonlocality, free will and "no many-worlds"
Observing the violation of Bell's inequality tells us something about all
possible future theories: they must all predict nonlocal correlations. Hence
Nature is nonlocal. After an elementary introduction to nonlocality and a brief
review of some recent experiments, I argue that Nature's nonlocality together
with the existence of free will is incompatible with the many-worlds view of
quantum physics.Comment: Talk presented at the meeting "Is Science Compatible with Our Desire
for Freedom?" organised by the Social Trends Institute at the IESE Business
School in Barcelona, Octobre 201
Risk factors for cluster seizures in canine idiopathic epilepsy
Cluster seizures (CS), two or more seizures within a 24-hour period, are reported in 38–77% of dogs with idiopathic epilepsy (IE). Negative outcomes associated with CS include a reduced likelihood of achieving seizure freedom, decreased survival time and increased likelihood of euthanasia. Previous studies have found factors including breed, sex and neuter status are associated with CS in dogs with IE; however, only one UK study in a multi-breed study of CS in IE patients exists to the author's knowledge, and thus further data is required to confirm these results. Data from 384 dogs treated at a multi-breed canine specific epilepsy clinic were retrospectively collected from electronic patient records. 384 dogs were included in the study, of which nearly half had a history of CS (49.1%). Dogs with a history of CS had a younger age at onset than those without (p = 0.033). In a multivariate model, three variables predicted risk of CS: a history of status epilepticus (p = 0.047), age at seizure onset (p = 0.066) and breed (German Shepherd Dog) (p < 0.001). Dogs with a history of status epilepticus and dogs with an older age at seizure onset were less likely to be affected by cluster seizures. German Shepherd Dogs (71% experiencing CS) were significantly more likely to suffer from CS compared to Labrador Retrievers (25%) (p < 0.001). There was no association between sex, neuter status, body size and CS. Further studies into the pathophysiology and genetics of CS are required to further understand this phenomenon
Association of Prenatal Maternal Depression and Anxiety Symptoms with Infant White Matter Microstructure
Importance: Maternal depression and anxiety can have deleterious and lifelong consequences on child development. However, many aspects of the association of early brain development with maternal symptoms remain unclear. Understanding the timing of potential neurobiological alterations holds inherent value for the development and evaluation of future therapies and interventions. Objective: To examine the association between exposure to prenatal maternal depression and anxiety symptoms and offspring white matter microstructure at 1 month of age. Design, Setting, and Participants: This cohort study of 101 mother-infant dyads used a composite of depression and anxiety symptoms measured in mothers during the third trimester of pregnancy and measures of white matter microstructure characterized in the mothers' 1-month offspring using diffusion tensor imaging and neurite orientation dispersion and density imaging performed from October 1, 2014, to November 30, 2016. Magnetic resonance imaging was performed at an academic research facility during natural, nonsedated sleep. Main Outcomes and Measures: Brain mapping algorithms and statistical models were used to evaluate the association between maternal depression and anxiety and 1-month infant white matter microstructure as measured by diffusion tensor imaging and neurite orientation dispersion and density imaging findings. Results: In the 101 mother-infant dyads (mean [SD] age of mothers, 33.22 [3.99] years; mean age of infants at magnetic resonance imaging, 33.07 days [range, 18-50 days]; 92 white mothers [91.1%]; 53 male infants [52.5%]), lower 1-month white matter microstructure (decreased neurite density and increased mean, radial, and axial diffusivity) was associated in right frontal white matter microstructure with higher prenatal maternal symptoms of depression and anxiety. Significant sex Ă— symptom interactions with measures of white matter microstructure were also observed, suggesting that white matter development may be differentially sensitive to maternal depression and anxiety symptoms in males and females during the prenatal period. Conclusions and Relevance: These data highlight the importance of the prenatal period to early brain development and suggest that the underlying white matter microstructure is associated with the continuum of prenatal maternal depression and anxiety symptoms
A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emirates
For most fires, Forensic investigation takes place well after building materials have cooled and knowledge of the structural damage due to heat exposure can reveal the temperature reached during an incident. Recently, there have been significant changes in the characteristics of cementitious materials used in the United Arab Emirates. Few studies focus on the application of thermo-gravimetric and petrographic techniques on newly developed structures and this work aims to address this deficiency by utilising a series of parametric laboratory-based tests to assess the effects of heat on hardened concrete. Specimens were made with a design mix used for low-rise residential homes and storage facilities. The key constituents were: Portland cement (PC), crushed gabbro stone and dune sand with water/cement ratios of 0.4-0.5. Cement substitutes included slag (GGBS), and silica fume (SF) at replacement percentages of up to 50% and 4%, respectively. The concrete cubes were exposed to heat inside an electric furnace with pre-determined temperature regimes of 150°C, 300°C, 600°C and 900°C. Petrographic examination was utilised to compare the discolouration of the cooled concrete. Data derived from thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are reported in order to assess the usefulness of these techniques in fire scene investigation to differentiate between these temperature regimes.. The results from the TGA indicate that the majority of the percentage weight loss for all the mixtures occurred in the range 650-700°C, which corresponds to the decarbonation of calcium carbonate, mainly from the aggregates. The endothermic DSC peak at 70-120°C relates to the loss of evaporable water. Since both of these reactions are irreversible, this information can help fire investigators estimate the temperature history of concrete after exposure to fire. On the other hand, the portlandite in the cement matrix dehydroxylates at 450-550°C but then reforms as the concrete cools. The onset temperature for the dehydroxylation of the reformed mineral is always lower than in virgin samples and its enthalpy furthermore depends strongly on the thermal history of the portlandite. Thus, this feature can be used to establish the temperature to which the material was exposed to during a fire incident
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping
Published online 24 August 2020.
Corrected by: Corrigendum to: Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Muhammad A. Asif, et al. Functional Plant Biology 49(7) 672 - 672. In the Acknowledgements, the ARC Centre of Excellence funding number was incorrect. The correct funding number is: CE140100008.Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur Ă— Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG(1-5).asl-5A, QG(1-5).asl-7B) sodium accumulation (QNa.asl-2A), chloride accumulation (QCl.asl-2A, QCl.asl-3A) and potassium:sodium ratio (QK:Na.asl-2DS2). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars.Muhammad A. Asif, Melissa Garcia, Joanne Tilbrook, Chris Brien, Kate Dowling, Bettina Berger, Rhiannon K. Schilling, Laura Short, Christine Trittermann, Matthew Gilliham, Delphine Fleury, Stuart J. Roy and Allison S. Pearso
- …