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Abstract
Human white matter development in the first years of life is rapid, setting the foundation for later development.
Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is
known about when in development individual differences in white matter microstructure are established. The aim of the
current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to
determine when in development individual differences are established. Two hundred and twenty-four children underwent
diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white
matter tracts (9 left–right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional
anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than
subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the
respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further
evidence of the importance of the first year of life with regard to white matter development, with potential implications for
informing early intervention efforts that target specific sensitive periods.
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Introduction
Research on early brain development has long suggested the
importance of infancy and early childhood as a window of sub-
stantial changes in both brain structure and function. Advances
in magnetic resonance imaging (MRI) technology has allowed
for a detailed characterization of these structural changes in
regard to gray and white matter. Although both gray and white
matter are important for overall brain function, white matter
development is intrinsically linked with changes in the brain’s
efficiency, which is related to a variety of cognitive, behavioral,

and psychopathological outcomes (e.g., Nagy et al. 2004; Mabbott
et al. 2006; Fields 2008; Filley and Fields 2016). The matura-
tion of white matter is thought to occur alongside the early
development of a number of important cognitive and behavioral
functions. Individual differences in white matter microstructure
are related to these outcomes as well as to risk for psychiatric ill-
ness. Specifically, a number of neuropsychiatric disorders, many
thought to originate early in development, are characterized by
aberrant white matter connectivity (Thomason and Thompson
2011).
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A number of neurobiological mechanisms contribute to
early white matter development, such as axon myelination
and growth, all serving to increase the overall efficiency of
these connections. Previous research on early white matter
development points to the first few years of life as a time of
rapid and profound growth (Knickmeyer et al. 2008; Dubois
et al. 2014; Qiu et al. 2015; Lebel and Deoni 2018). The rate of
development during this window underlies a higher degree of
plasticity and supports the importance of this age range for
setting the stage for later healthy development. In order to
better understand the effects of white matter abnormalities or
atypicalities, it is important to first understand typical patterns
of development. Only then can we more accurately determine
when abnormalities may first arise or be detected. As such,
there is substantial value in improving our understanding of
individual differences in typical white matter development
using longitudinal designs and large samples.

The majority of research exploring trajectories of white mat-
ter microstructure development focuses on either infancy and
toddlerhood or childhood through adulthood. In fact, many
review articles center around these ranges, looking at either
birth to 2 years (Dubois et al. 2014; Qiu et al. 2015) or ages
4 years through adulthood (Lebel et al. 2019). Missing is the
research that connects the rapid development observed in the
first 2 years to the relatively more stable changes occurring in
early childhood. Additionally, much of the existing research is
cross-sectional, and the lack of within-subject data limits the
extent to which we can gain a strong understanding of individ-
ual differences in development. Even the research that is char-
acterized as longitudinal could be more accurately described as
cohort sequential or accelerated longitudinal designs (e.g., Lebel
and Beaulieu 2011; Paydar et al. 2014; Simmonds et al. 2014;
Krogsrud et al. 2016), which have the potential to be impacted
by cohort effects. Though these studies cover a larger range
of ages, they do not provide within-subject information across
the full longitudinal timeframe. These studies that focus on
the general trajectory of white matter development (i.e., group
averages) lack an exploration of predictive ability that could
be better understood by examining individual differences in
development.

Changes in white matter have been characterized primarily
using diffusion tensor imaging (DTI) techniques, which provide
indirect measures of white matter microstructure and organi-
zation by considering the diffusion of water molecules. Diffu-
sion characteristics reflect changes in white matter structure
related to fiber organization, membrane proliferation, and fiber
myelination, and DTI processing produces quantitative mea-
sures that have been demonstrated as sensitive to reliable age-
and maturity-related changes (Feldman et al. 2010; Dubois et al.
2014; Tamnes et al. 2017).

White matter microstructure continues to develop across the
lifespan. Although specific methodology varies between studies,
this relatively large body of research has established a few con-
sistent patterns that have been discussed in review articles (e.g.,
Dubois et al. 2014; Qiu et al. 2015; Lebel et al. 2019). For example,
white matter development is nonlinear, with changes in the first
few years being much more rapid than those in the second year
and beyond (Knickmeyer et al. 2008; Gao et al. 2009; Geng et al.
2012; Gilmore et al. 2018; Girault et al. 2019). After this period,
rates slow but there is continued growth at different rates across
different areas of the brain. For example, some research has
found that association tracts with frontal connections mature
more slowly than do projection or commissural tracts (Kinney

et al. 1988; Guillery 2005; Gao et al. 2009; Deoni et al. 2011, 2012;
Geng et al. 2012; Lebel et al. 2019).

The goal of the current study was to fill this gap by describ-
ing the development of white matter microstructure in tracts
important for cognitive development in a large, longitudinal
sample from birth through 6 years of age. This study had two
primary aims. First, we aimed to describe patterns of early white
matter development, including associations between tracts at
each age and trajectories across time. Second, we aimed to
predict individual differences in white matter microstructure at
6 years using values at earlier ages to determine at what point
in development individual variability is established.

Materials and Methods
Subjects

Children in this study are part of the Early Brain Development
Study, an ongoing longitudinal study at the University of North
Carolina at Chapel Hill (UNC) (Knickmeyer et al. 2008, 2016;
Gilmore et al. 2010). We have previously studied white matter
development from birth to 2 years of age in this cohort (Geng
et al. 2012; Lee et al. 2017; Girault et al. 2019), and we are now
extending this study to ages 4 and 6 years. Parents were recruited
from UNC hospitals during the second trimester of pregnancy,
when they provided written informed consent. Subjects were
included in the analyses for this study if they had valid DTI
tract average data for at least one time point of data collection
(neonate, 1, 2, 4, or 6 years of age; see Fig. 1). Exclusion criteria
were premature birth (<37 weeks’ gestation), over 24 h spent
in the neonatal intensive care unit after birth, multiple gesta-
tion birth (e.g., twins), presence of a major medical event or
MRI abnormality, diagnosis of a neurodevelopmental disorder
by 6 years, or familial risk of psychiatric illness. If there were
multiple children from the same family in the study, only one
sibling’s data were retained for data analysis. The sibling with
the higher number of valid DTI acquisitions was kept in analysis,
and if siblings had the same number of time points of DTI data,
we prioritized the sibling with 6-year data. If both or neither had
6-year DTI data, one was randomly selected for inclusion.

Data were analyzed from 146 neonates, 91 one-year-olds, 62
two-year-olds, 84 four-year-olds, and 94 six-year-olds, across 224
unique subjects. Of these, over half (60.7%) had valid data for
two or more DTI scans. Table 1 includes demographic data and
scanning information for all subjects. Through age 2, subjects
were scanned during natural sleep without sedation. At 4 and
6 years, children were given the option to watch a video during
their scan. Scan success rates can be found in Table 2: the total
number of children (after applying exclusion criteria) who were
scanned, the number who provided at least some DTI data, and
the number whose data were analyzed in this study.

Image Acquisition

All subjects were scanned using 3T scanners. Earlier DTI data
were acquired on a 3T Siemens Allegra scanner (Siemens Med-
ical Solutions), first obtaining six directions then updated to 42
directions. Later DTI data were acquired using a 3T Tim Trio. The
change in scanner/sequence type resulted from the upgrades in
MRI technology that occurred throughout the course of the lon-
gitudinal study. Refer to Table 1 for the distribution of subjects
and scans across scanners. Supplementary Figure 1 illustrates
the study timeline to clarify when the changes occurred and



Figure 1. Overview of longitudinal sample, representing subjects with valid
DTI tract average data at each age. A6, Allegra 6-direction DWI; A42, Allegra

42-direction DWI; T42, Trio 42-direction DWI.

how changes impacted the distribution of the sample across
different scanners and sequence types. For the initial Allegra
data, a single-shot echo-planar imaging spin-echo DTI sequence
was used with the following parameters: TR/TE = 5200/73 ms,
slice thickness = 2 mm, in-plane resolution = 2 × 2 mm2, and a
total of 45 slices. Each sequence acquired one baseline image
(b = 0) and diffusion-weighted images along six gradient direc-
tions using a b value of 1000 s/mm2. In order to improve signal-
to-noise ratio (SNR), sequences were repeated five times and
then combined into a single diffusion-weighted imaging (DWI)
volume after motion correction. For the remaining Allegra data
and all Trio data, 42 directions were acquired with a b value

of 1000 s/mm2 (in addition to 7 baseline images, b = 0), using
the following parameters: TR/TE/Flip angle = 7680/82/90◦, slice
thickness = 2 mm, and in-plane resolution = 2 × 2 mm2, with a
total of 60–72 slices. It is noteworthy that with a single-shell
acquisition, while we are able to estimate a good diffusion tensor
model, this is insufficient for estimating or computing diffusion
kurtosis (DKI; Steven et al. 2014) or more complex models such
as neurite orientation dispersion and density imaging (NODDI;
Zhang et al. 2012).

DTI Data Processing

A study-specific quality control protocol was applied to all raw
DWI data using DTIPrep (www.nitrc.org/projects/dtiprep), which
included slice-wise and gradient-wise artifact detection, as well
as eddy current and motion correction (Oguz et al. 2014). This
automatic quality control was followed by visual checking of all
DWIs in order to exclude additional gradients containing arti-
facts not detected through the automatic processing. The num-
ber of excluded gradients through automatic and manual qual-
ity control checking provides a rough estimate of motion and
image quality. Table 3 provides the average number of gradients
excluded during both quality control steps. Images obtained
using six directions had a maximum of 30 gradients, and 42-
direction images had a maximum of 42 gradients. Neonate scans
obtained with the six-direction protocol on the Allegra scanner
had a significantly higher number of gradients excluded than
did scans at all other ages using that scanner and protocol.
In regard to the 42-direction protocol on both the Trio and
Allegra scanners, 4- and 6-year-old scans had significantly more
gradients excluded than scans at other ages.

DTI Atlas Mapping and Tractography

Skull and nonbrain tissue were masked out using the Brain
Extraction Tool (BET; Smith 2002) on the average baseline (b = 0)
image followed by manual mask corrections, if necessary. Ten-
sors were estimated using a weighted least squares algorithm
(Liu et al. 2010). Our fiber tract-based DTI processing pipeline
included creating study-specific DTI atlases. Specifically, using
the National Alliance for Medical Image Computing (NA-MIC)
DTI fiber analysis framework (www.nitrc.org/projects/dtiatlas
builder; Verde et al. 2014), we computed three age-specific
atlases: an infant, a 1- to 2-year-old, and a 4- to 6-year-old DTI
atlas. Deformation fields were computed to map each DTI scan
into its corresponding atlas space. The 4- to 6-year-old DTI atlas
was then deformable mapped into the 1- to 2-year-old DTI atlas
space. For each 4- and 6-year scan, a single deformation field
was computed by concatenating the two deformation fields
(individual scan into atlas and 4- to 6-year atlas into 1- to
2-year atlas). The deformation fields were computed by match-
ing intensity-normalized FA images and were then applied to
the diffusion tensors; FA images were recomputed from the
warped diffusion tensors. The atlas was then updated by com-
puting it as the average over all warped tensors. Fiber tract seg-
ments were reconstructed in the neonate and 1- to 2-year atlases
using streamline tractography using 3D Slicer (https://www.
slicer.org). The same methodology was used to tract homologous
fibers across both atlases, with identical, neuroanatomically
guided seed targets identified in either native atlas space (see
Supplementary Appendix of Lee et al. 2015). Visual inspection
was done to ensure the fiber tracts appropriately reached the
targets of interest, ensuring tracts are as similar as possible

www.nitrc.org/projects/dtiprep
http://www.nitrc.org/projects/dtiatlasbuilder;
https://www.slicer.org


Table 1 Participant demographic and scan information

M (SD) Range

Gestational age, days 278.0 (7.6) 259–295
Maternal education, years 16.3 (3.0) 8–25
Birthweight, g 3470.1 (421.2) 2373–4701

N (%)
Sex, male 110 (49.1%)
Five scans 5 (2.2%)
Four scans 27 (12.1%)
Three scans 48 (21.4%)
Two scans 56 (25.0%)
One scan 88 (39.3%)

Neonate
N = 146

1 Year
N = 91

2 Years
N = 62

4 Years
N = 84

6 Years
N = 94

M (SD) M (SD) M (SD) M (SD) M (SD)
Age at scan (months) 0.69 (0.28) 12.67 (0.73) 24.62 (0.67) 49.17 (0.79) 73.75 (1.28)

N (%) N (%) N (%) N (%) N (%)
Allegra, 6-direction 88 (60%) 38 (42%) 23 (37%) 9 (11%) 0 (0%)
Allegra, 42-direction 37 (25%) 32 (35%) 26 (42%) 20 (24%) 32 (34%)
Trio, 42-direction 21 (14%) 21 (23%) 13 (21%) 55 (65%) 62 (66%)

SD, standard deviation.

Table 2 Scan success rates by age

Neonate 1 Year 2 Years 4 Years 6 Years
N N N N N

MRI total 266 127 79 102 97
DWI total (% of MRI) 224 (84.2) 104 (81.9) 67 (84.8) 93 (91.2) 97 (100)
Tractography total (%
of DWI total)

146 (65.2) 91 (87.5) 62 (92.5) 84 (90.3) 94 (96.9)

Note: MRI total is the number of children (after applying exclusion criteria) who provided at least some MRI data during the study visit. DWI total is the number of
children who completed the DWI sequence during their visit. Tractography total is the number of children whose DWI scans passed each stage of quality control and
tract profile generation.

Table 3 Summary of gradients excluded during automatic and visual quality control

Neonate
N = 146

1 Year
N = 91

2 Years
N = 62

4 Years
N = 84

6 Years
N = 94

M (SD)
%

M (SD)
%

M (SD)
%

M (SD)
%

M (SD)
%

Allegra, 6-direction 4.93 (4.06)∗
16%

1.50 (2.91)
5%

1.65 (3.30)
6%

2.33 (3.54)
8%

—

Allegra, 42-direction 5.10 (4.64)
12%

3.84 (3.26)
9%

3.62 (2.86)
9%

12.10 (5.10)∗
29%

9.13 (5.04)∗
22%

Trio, 42-direction 4.62 (5.11)
11%

5.43 (4.39)
13%

5.08 (3.04)
12%

11.95 (4.78)∗
28%

7.95 (4.43)∗
19%

Note: For the 6-direction scans, the maximum number of gradients is 30. For the 42-direction scans, the maximum number of gradients is 42.
∗P < 0.05, values significantly larger than the other ages with the same scanner/sequence type.

across the two atlases. The infant and 1- to2-year-old DTI atlases
as well as all fiber tracts employed in this work are publicly
accessible as part of the UNC EBDS pediatric atlas distribution
(https://www.nitrc.org/projects/uncebds_neodti/).

The following fibers, important for cognitive development,
were included in this analysis: commissural bundles of the
genu and splenium of the corpus callosum; projection fiber
tracts of bilateral corticothalamic prefrontal projections (CTPF);
association tracts of bilateral uncinate (UNC), bilateral inferior

longitudinal fasciculus (ILF), bilateral superior longitudinal fas-
ciculus (SLF), bilateral anterior cingulum (CGC), bilateral inferior
fronto-occipital fasciculus (IFOF), and three bilateral segments of
the arcuate fasciculus (ARC)—the direct (fronto-temporal) path-
way (ARC-FT), the indirect anterior (fronto-parietal) pathway
(ARC-FP), and the indirect posterior (temporo-parietal) pathway-
ARC-TP). See Figure 2 for representations of these fiber bun-
dles, which include nine left–right corresponding tracts and two
commissural tracts. Fiber definitions have been described in

https://www.nitrc.org/projects/uncebds_neodti/


Figure 2. Tracts analyzed in the current study. These images were generated using 1-year cortical surfaces and tracts. Top: purple = corticothalamic prefrontal projec-
tions (CTPF); red = genu of corpus callosum (genu); blue = splenium of corpus callosum (splenium). Bottom: Light blue = uncinate (UNC); dark green = inferior fronto-
occipital fasciculus (IFOF); yellow = inferior longitudinal fasciculus (ILF); red = cingulum (CGC); light green = arcuate fronto-parietal segment (ARCFP); orange = arcuate

frontotemporal segment (ARCFT); blue = arcuate temporal-parietal segment (ARCTP); purple = SLF.

previous articles from our research group (Lee et al. 2015; Girault
et al. 2019).

Diffusion property profiles were sampled along each fiber
for axial diffusivity (AD), radial diffusivity (RD), and fractional
anisotropy (FA). Profiles were thus sampled at equally spaced
points along the length of each tract mapped back into
each subject’s original DTI space. Each tract from each scan
underwent additional visual and quantitative diffusion profile
quality control using FADTTSter (http://www.nitrc.org/projects/
fadttster). Individual tracts were excluded if their FA profile
had a correlation with the population average FA profile of
<0.70. Some neonate tracts were reproduced less reliably across
scans and therefore had higher failure rates than others (see
Supplementary Table 1). Although for most tracts, very few
subjects were excluded, there were three tracts that had higher
levels of exclusions, all in neonates: ARCFP-R, ARCTP-L, and
CGC-R. The arcuate tracts especially are difficult to track in
infants due to the maturation and progression of myelination
as well as crossing fibers (Dubois et al. 2016; Wilkinson et al.

2017). Additionally, terminal arc lengths for some tracts had
high levels of noise and were accordingly cropped (Girault et al.
2019). In the neonate atlas, the following tracts were cropped:
genu, IFOF-R, and UNC-R. In the 1- to 2-year and 4- to 6-year
atlas, the following tracts were cropped: ILF-L and -R, CTPF-
R, splenium, genu, ARC-TP-L and ARC-TP-R, and ARC-FT-L and
ARC-FT-R. Overall average AD, RD, and FA values were computed
for each tract, and these values were used in the analyses for
this study.

Statistical Analysis

In addition to the tract quality control criteria described above,
tract average value distributions were examined for outliers.
If a value was more than three standard deviations from the
mean, all three parameters generated from that subject’s scan
(at that age) were removed (see Supplementary Table 1). We
examined tract averages for sex- and socio-economic status
(SES)-based differences using bivariate correlations, considering

http://www.nitrc.org/projects/fadttster
http://www.nitrc.org/projects/fadttster


maternal education as a proxy for SES. We also plotted the
mean AD, RD, and FA values for each scanner/sequence type,
averaging across tracts for each age. An analysis of variance was
used to test for differences between scanner/sequence types at
each age for the three measures, with a Bonferroni correction
applied to account for the three different measures across five
different ages. We also examined tract asymmetries for pairs
of left–right corresponding tracts by calculating lateralization
values for AD, FA, and RD at each age, using the formula L−R

(L+R)/2 ,
where L is the value for the left-hemisphere tract and R is the
value for the right-hemisphere tract. A positive value for the
lateralization measure indicates a higher tract average value of
the left-hemisphere tract relative to the right-hemisphere tract.
Left–right corresponding tracts were tested for asymmetries
at each age using a paired t-test with a Bonferroni correction
for all three measures across 5 years for the nine different
bilateral tracts.

For each of the three DTI measures (AD, RD, or FA) at each of
the 5 time points (neonate, 1, 2, 4, or 6 years), cross-sectional
partial correlations between each of the 20 different tracts (9
left–right corresponding tracts and 2 commissural tracts) were
calculated, including all individuals with valid data for each tract
in a given year. Partial correlations control for child variables of
age at MRI, sex, gestational age at birth, and birthweight, scan-
ner/sequence type, and mother’s education level. Correlations
were then organized into a 20 by 20 correlation heatmap, with
darker blue indicating a stronger positive correlation. For each of
the partial correlations, a t-test after a Fisher z-transformation
was used to test the null hypothesis that the true partial correla-
tion is 0. In the heatmaps, all partial correlations that were not
significant after a Bonferroni correction, accounting for all 190
pairwise correlations, were set to be 0 and therefore appear as
white.

To illustrate tract-specific trajectories, the average of each
of the three measures was calculated at each age and plotted
with the average value on the y-axis and age on the x-axis. The
average for a given tract for a given year was taken from all
subjects with valid data for that tract at the given year. Using
these values, we also calculated percent change between years.
Additionally, to examine a different marker of tract maturity, we
calculated the percent of 6-year FA values using FA of each tract
at each previous age.

Linear models were used to obtain an estimate of how pre-
dictive DTI measures from earlier time points were the same
for DTI measure at the final time point (6 years). For each
DTI parameter for each tract, a model was fit using age at
scan and scanner/sequence to predict the measure at each of
the intermediate time points (neonate, 1, 2, and 4 years). The
residuals from these models, which can be thought of as the
DTI measures without the effect of age and scanner/sequence,
were then used as a standardized version of the DTI measures
in order to predict the same DTI measure in the same tract at
year 6. Also included in each of the models were birthweight,
gestational age at birth, sex, mother’s education, age at 6-year
scan, and scanner/sequence at 6-year scan. Individuals were
included in the predictive models if they had valid data at
the earlier time point, for all covariates, and at 6 years. The
partial R2 values for the DTI measure residuals from the earlier
age represent how much variation in 6-year DTI measures can
be explained by the same measures from an earlier age after
controlling for all other covariates. Significance levels are also
reported from an F-test of the null hypothesis that the true
coefficient for the residuals of previous DTI measurement is zero

in the model including all covariates. A Bonferroni correction for
all three measures across 20 tracts and 4 ages was applied to
these tests.

As a sensitivity analysis, we ran the same linear models
using only subjects with the exact same scanner/sequence for
year 6 and the same scanner/sequence at the intermediate
time point. In order to ensure adequate sample size, we did
not require this be the same scanner/sequence across all time
points. In order to determine whether adding an earlier time
point in addition to the 4-year measure would explain additional
variance in 6-year measures, we ran an additional sensitivity
analysis that included DTI measures at 6 years as the outcome
and the same DTI measure residuals from year 4 as well as
one of the other intermediate time points (neonate, 1 year or
2 years) as covariates. The same additional covariates as the
other predictive models were also included. Further information
on these analyses can be found with the supplementary tables.

Results
Descriptive Statistics

The tract average values included in the following analyses can
be found in Supplementary Tables 2–4. All tract average values
were first analyzed for differences based on sex or maternal
education. Supplementary Tables 5–7 summarize the correla-
tions between these demographic variables and tract average
values. After Bonferroni correction for multiple comparisons,
there is only one tract average value that had significant sex
differences (4-year right cingulum AD) and one tract average
value that is significantly associated with maternal education
(2-year right cingulum AD) (see Supplementary Table 5). We also
examined differences in tract average values across scanners
and sequences (see Supplementary Fig. 2). The only age and
parameter that significantly differs across scanner/sequence is
AD at 1 year. Follow-up pairwise comparisons reveal that the AD
values of images acquired with the Trio scanner using the 42-
direction protocol are slightly (<3%) but significantly lower than
those acquired using either of the Allegra sequences.

A number of pairs of left–right corresponding tracts show
significant asymmetries after correction for multiple compar-
isons (see Supplementary Table 8). In general, tracts show the
same lateralization pattern across ages and parameters, with
almost every pair showing significant asymmetries in at least
one parameter at each age. Notably, the ARC-FT has a different
statistically significant asymmetry at birth (right FA is greater
than left FA) than at later ages (left FA is greater). A similar
pattern is shown with RD, though asymmetries at 4 and 6 are not
statistically significant. Other tracts are consistent across ages:
For example, UNC FA and AD are higher on the right, whereas
ILF FA and AD are higher on the left.

Cross-Sectional Descriptions

The first aim of this study was to describe the characteristics of
white matter tracts at different ages. Specifically, we conducted
partial correlations across tracts to determine the extent to
which microstructural properties were consistent across the
brain at each age, controlling for child sex, gestational age
at birth, birthweight, age at scan, scanner/sequence type,
and maternal education. These correlations are displayed as
heatmaps in Figures 3–5. Partial correlations between AD values
across tracts become weaker over time: The average correlation



Figure 3. Cross-tract partial correlations of AD from birth through 6 years. Average partial correlations: neonate (n = 146) M = 0.63; 1 year (n = 91) M = 0.36; 2 year (n = 62)
M = 0.38; 4 year (n = 84) M = 0.36; 6 year (n = 94) M = 0.33. White boxes represent nonsignificant partial correlations, after Bonferroni correction for multiple comparisons.

across tracts at birth is 0.63, but by 6 years the average has
dropped to 0.33 (see Fig. 3). Average correlations for RD at birth
are relatively stronger than at later ages (0.78 vs. between 0.63
and 0.67), though there does not appear to be as much change
across ages for FA. Generally, the highest correlations are found

between corresponding tracts in opposite hemispheres (e.g.,
left and right cingulum). Additionally, a few other tracts are
relatively highly correlated across ages and parameters: for
example, between the IFOF and the ILF, the IFOF and the UNC,
and among the different arcuate (ARC) segments.



Figure 4. Cross-tract partial correlations of RD from birth through 6 years. Average partial correlations: neonate (n = 146) M = 0.78; 1 year (n = 91) M = 0.63; 2 years (n = 62)
M = 0.65; 4 years (n = 84) M = 0.67; 6 years (n = 94) M = 0.64. White boxes represent nonsignificant partial correlations, after Bonferroni correction for multiple comparisons.

Tract Trajectories
Our next aim was to visualize the trajectories of white matter
microstructural development from birth through 6 years.
These trajectories can be found in Figure 6 and represent
the mean tract average values for each parameter across
age. The values represented in these plots are presented

in Supplementary Tables 2–4. As expected, both AD and RD
decrease over time, and FA increases over time. For all three
parameters, the most rapid change occurs between birth and
1 year, though this change is more pronounced in RD and FA than
in AD. Considering average AD and FA, tracts generally maintain
rank order, such that those with relatively higher values at birth



Figure 5. Cross-tract partial correlations of FA from birth through 6 years. Average partial correlations: neonate (n = 146) M = 0.56; 1 year (n = 91) M = 0.51; 2 year (n = 62)
M = 0.51; 4 year (n = 84) M = 0.59; 6 year (n = 94) M = 0.53. White boxes represent nonsignificant partial correlations, after Bonferroni correction for multiple comparisons.

remain higher across time. Rank order of tracts by RD values is
less consistent from birth to 1 year but appears to stabilize from
1 to 6 years.

Using the mean tract average values across all tracts at
each age, we estimated the percent change between years (see
Table 4). Between the neonate and 1-year scans, there is a 71.3%

increase in average FA, along with a 13.7% decrease in average
AD and a 32.2% decrease in average RD. These changes are
substantially greater than the microstructural changes in sub-
sequent years (represented by increases in FA and decreases in
AD and RD). Each of these findings confirms the patterns seen
in the tract average trajectories.



Figure 6. Trajectories of AD, RD, and FA from birth through 6 years.

We also considered FA values at each age as a proportion of
6-year FA for each tract. These values are presented in Figure 7.
There are some notable patterns in these results. For example,
the CTPF tracts are relatively closer to their 6-year FA values
at birth, as compared with other tracts. The ARC segments, on
the other hand, are relatively lower proportions of 6-year FA at
birth, with these proportions all below the average. There was
a much larger range for the neonate proportions of 6-year FA

(0.37–0.60) as compared with 1-year (0.74–0.86), 2-year (0.84–
0.94), and 4-year (0.93–1.02) proportions.

Individual Differences

The second aim of this study was to understand when in devel-
opment individual differences in white matter microstructure
arise by measuring the predictive value of each microstructural



Table 4 Average AD, RD, and FA values and percent changes across ages

AD (10−3 mm2/s) RD (10−3 mm2/s) FA
M (SD) M (SD) M (SD)

Neonate average 0.00155 (2.9e−4) 0.00115 (2.8e−4) 0.200 (0.08)
1-Year average 0.00134 (1.9e−4) 0.00078 (1.5e−4) 0.342 (0.09)
2-Year average 0.00131 (1.9e−4) 0.00070 (1.4e−4) 0.383 (0.09)
4-Year average 0.00126 (1.8e−4) 0.00064 (1.5e−4) 0.415 (0.12)
6-Year average 0.00125 (1.6e−4) 0.00061 (1.4e−4) 0.430 (0.11)

% % %
% Change neo-1 13.7 32.2 71.3
% Change 1–2 2.7 9.9 12.1
% Change 2–4 3.1 8.5 8.3
% Change 4–6 1.5 4.6 3.7

% Change neo-6 19.9 46.7 115.5
% Change 1–6 7.1 21.4 25.8

Figure 7. Heatmap of the proportion of 6-year FA values by each tract at earlier
ages.

property at each age for the respective property at 6 years. This
was done by fitting regression models to predict the 6-year tract
average from the respective standardized parameter at each
earlier age. Partial R2 values for these models can be found
in Figure 8, with model P values in Supplementary Table 9. All
models included covariates of child sex, birthweight, gestational
age at birth, maternal education, child’s age at 6-year scan, and
the scanner/sequence type for the 6-year scan. These models
only included the subset of subjects with tract average data at

6 years and at least one previous scan (neonate, 1, 2, or 4 years).
Sample sizes for these models can be found in Figure 8.

Overall, individual differences in AD, RD, and FA at 6 years
are weakly explained by variability in these parameters at birth
(on average, 9–16%), with very few parameter estimates reaching
statistical significance. The average predictive value of tract
microstructure at 1 year is much stronger: 31% for AD, 44%
for RD, and 52% for FA. Generally, AD at 1 year is slightly less
predictive of 6-year AD, compared with the predictive values of
RD and FA, except in IFOF and ILF tracts. The predictive values
of these parameters continue to increase with age; the models
predicting 6-year tract average values from respective 4-year
values are the strongest, with tract average values uniquely
explaining on average more than 50% of the variance in respec-
tive 6-year parameters. Even after Bonferroni correction (the
most conservative type of correction), the majority of models
predicting 6-year values from 1-, 2-, and 4-year tract average
values remain significant (see Fig. 8).

Although these models suggest that 4-year microstructural
parameters explain a significant amount of variance in 6-year
values, more so than earlier ages, we ran a series of follow-
up analyses that included earlier ages in addition to the
4-year time point. Adjusted R2 for these models can be found
in Supplementary Tables 10–12. For the vast majority of these
models, adding an earlier time point did not contribute
above and beyond what could be explained by the 4-year
parameter alone. Additionally, these models include much
smaller subsamples, as each requires that an individual child
has valid data for three scans (4-year, 6-year, and the earlier time
point).

As scanner heterogeneity is a complicating factor, even when
controlling for scanner/sequence, we ran similar regression
models in subsets of children who were all scanned using one
protocol (e.g., 6-direction Allegra) at the earlier time point and
one protocol (e.g., 42-direction Trio) at the 6-year scan, selecting
the scanner/sequence combination with the largest sample size.
(There were no children who were scanned with the same
protocol at every age.) Supplementary Table 13 summarizes
these results. Because these models utilize only a subset of
scores, model sample sizes are much smaller (range n = 16 to
n = 34). However, average partial R2 values are largely similar
to those values obtained in the full models (Fig. 8). The main



Figure 8. Heatmap representing partial R2 values for individual tracts predicting 6-year tract averages. Values in bold represent models with coefficients that
were statistically significant after Bonferroni correction for multiple comparisons. P values for the tract average coefficients in these models can be found in
Supplementary Table 2. Model sample sizes: neonate to 6 years, n = 50; 1–6 years, n = 42; 2–6 years, n = 32; 4–6 years, n = 53.

exception was the models predicting 6-year RD from 2-year
RD. Given that this is the only parameter and predictor age
that differed greatly, we attribute these differences to the small
subset sample size, which is only half that of the full model
sample.

Discussion
To our knowledge, this is the first study to follow a sample of
children from birth through 6 years, allowing for within-subject
analyses of longitudinal data. The most notable finding from
these analyses is that a large portion of variance in 6-year tract
microstructure can largely be explained by microstructure at
1 year, especially as reflected in RD and FA. By 1 year, tract
averages are largely significantly predictive of their respective
6-year values, accounting for, on average, 40% or more of the
variance in microstructural parameters. By contrast, only about
10% of the variance in 6-year values could be accounted for by
the tract average values at birth. This suggests that white matter
microstructure at 1 year of age may be helpful for predicting
later tract characteristics or potentially other outcomes. With
age, there are incremental improvements in predictive value,
as expected, but the largest increase occurs between birth and

1 year. Our results suggest that individual differences in RD,
which is thought to reflect myelination in the developing brain,
are more established by age 1 than are individual differences in
AD, which is thought to reflect fiber organization and density
(Dubois et al. 2014). However, it is interesting that AD values at
1 year for both left and right IFOF and ILF were significantly
predictive of 6-year values, suggesting that these tracts are
relatively more organized at 1 year compared with other tracts.

Cross-sectional correlations suggest that at birth, microstruc-
tural patterns are fairly consistent across tracts. Across all
three parameters, cross-tract correlations were stronger at birth
than at subsequent ages. Decreases in cross-tract correlations
may reflect different levels of maturity between tracts that
occurs as some networks mature earlier and more quickly
than others. Previous research has established conflicting
patterns of correlations across tracts. For example, in a larger
sample (one that included twin pairs), our research group found
similar results to the current study, with correlations decreasing
between birth and 2 years (Lee et al. 2017). On the other hand,
Mishra et al. (2013) found that intertract correlations became
stronger between birth and puberty, though this was in a
small cross-sectional sample. The differences between studies
are likely due to maturational changes between 6 years and



adolescence; however to our knowledge, no existing research
has directly explored this pattern.

Although the general strength of partial correlations between
tracts across time differs across parameters, when looking at
pairs of tracts with higher correlations, some distinct patterns
emerge. The pairs of tracts with relatively high partial correla-
tions across ages and parameters were corresponding tracts in
opposite hemispheres or those that are generally anatomically
proximate or connecting nearby cortical areas. For example, we
see strong partial correlations between the IFOF and the ILF,
as well as between different ARC segments. Tracts that are in
similar anatomical locations within the brain are likely to exhibit
similar patterns in microstructural development, since it is well
known that myelination and white matter maturation occurs
in a particular spatial pattern. Additionally, it is possible that
the tracts with high correlations may track through some of the
same voxels.

The plots illustrating the changes in tract averages from birth
to 6 years are largely consistent with previous research on early
white matter development (Dubois et al. 2014). As expected,
AD and RD decreased while FA increased across age. The most
rapid changes across all three parameters occur between birth
and 1 year. In fact, the changes in parameter values in this
first year alone are substantially greater than the additional
changes that occur between 1 and 6 years, as summarized in
Table 3, though the average change in AD from birth to 1 year is
smaller than the changes in RD and FA in that same timeframe.
Additional research suggests that microstructural changes after
6 years, though not insignificant, are relatively small compared
with the development observed during infancy and early child-
hood (Lebel and Beaulieu 2011; Lebel et al. 2019). The patterns
established in this study, in conjunction with research on older
children and adults, confirm that the first year is especially
important for establishing the foundation for later white matter
development.

The proportion of 6-year FA accounted for by earlier ages
further supports the claim about the importance of the first
year of life. There is a much greater range of proportions at
the neonate scan than for any of the subsequent scans. These
analyses also suggest that the CTPF tracts are more similar
to their 6-year FA values at birth compared with other tract
proportions. Although we would expect tracts that project to
the prefrontal cortex to mature later, corticothalamic tracts are
among the earliest to mature. The arcuate segments, on the
other hand, show relatively lower proportions of 6-year FA at
birth, compared with the other tracts.

Results from our analysis of tract asymmetries are interest-
ing, considering the role of the arcuate in early language devel-
opment. The frontotemporal segment of the arcuate fasciculus
(ARC-FT) showed a different asymmetry pattern across the first
6 years than any other pair of corresponding tracts. Specifically,
at birth, the right ARC-FT had higher FA and lower RD, but at
1 year and later, the left ARC-FT had higher FA and lower RD.
Given the well-established leftward asymmetry of the arcuate
and the role of the left ARC-FT in language development in
adults and children (e.g., Catani et al. 2005; Lebel and Beaulieu
2009), it stands to reason that exposure to language input during
the first few years would result in differential maturation of the
corresponding segments. However, we recommend caution in
interpreting these asymmetry results as left and right bundles
were not symmetric in the atlases. Additionally, cropping was
applied based on noise levels at the end of tracts, without

any attempt to ensure symmetrical cropping across left–right
corresponding tracts.

Our results suggest that microstructural properties, namely,
FA and RD, in a subset of fibers at age 1 explain significant
variation in those same metrics 5 years later at age 6. These
findings echo a body of work reporting that white matter prop-
erties measured by diffusion MRI undergo substantial develop-
ment in the first year of life (Geng et al. 2012; Dubois et al.
2014; Girault et al. 2019), with measurable myelin content in
the brain increasing rapidly in the latter part of the first year
(Deoni et al. 2011). The lack of association between WM metrics
at birth and age 6 is most likely explained by the dramatic
developmental growth that occurs during this first postnatal
year, which may be driven to a greater extent by perinatal and
environmental factors than at later ages. Twin studies support
this hypothesis by demonstrating that the heritability of white
matter integrity increases from birth to ages 1 and 2 (Lee et al.
2015; Lee et al. 2019), suggesting that environmental factors
(or measurement error) accounts for more variability in white
matter microstructure at birth than later ages.

Generally stronger associations across development for FA
and RD compared with AD, as indicated by both the partial
correlation heatmaps and the predictive models, may be due to
the lack of biological specificity reflected in AD as it relates to
myelination (Dubois et al. 2014). The partial correlations across
tracts using AD are notably weaker at ages 1 year and older,
compared with those correlations using RD and FA, as shown
by the number of boxes in each heatmap indicating nonsignifi-
cant partial correlations. We also observed the least amount of
change in tract averages of AD across development compared
with RD and FA. For AD, fewer tracts at 1 and 2 years have
significant associations with values at 6 years compared with
RD, for which most tracts at 1 year are significantly predictive
of 6-year values. AD is thought to be a marker of axonal orga-
nization and integrity, while RD tracks more consistently with
premyelination and myelination (Dubois et al. 2014). Thus, the
relatively small change in AD over time may reflect the inherent
organization of the axonal network, which is established in
utero and primarily modified postnatally through myelination
(Ball et al. 2014; Dubois et al. 2014). Overall our results suggest
that individual differences in the processes that RD represents,
including myelination, are present earlier in development than
those that AD represents. However, we suggest caution in the
interpretation of the specific biological mechanisms underlying
developmental changes diffusion parameters, as most of what
we know about specific mechanisms of AD, RD, and FA come
from rodent studies of axonal injury and dysmyelination or
simulations (Winklewski et al. 2018), not typical development.

Previous research describes different rates of development
for association, projection, and commissural tracts (e.g., Lebel
and Beaulieu 2011; Geng et al. 2012; Dubois et al. 2014; Lee et al.
2017). Our results demonstrate some consistency with this cat-
egorization. For example, the two commissural tracts analyzed
in the current study, the genu and splenium, have the highest
FA values across age (see Fig. 6 and Supplementary Table 5).
Additionally, splenium FA at birth is a relatively high proportion
of FA at 6 years, relative to many of the other tracts. Tracts, with
the strongest associations with 6-year microstructure impli-
cated across multiple diffusion parameters and developmental
time points (Fig. 8), were primarily association fibers, including
segments of the ARC, IFOF, ILF, SLF, and UNC. These tracts
provide pivotal connections between the frontal and temporal



(ARC, UNC), frontal and parietal (ARC, SLF), parietal and temporal
(ARC), visual and temporal (ILF), and visual and frontal (IFOF).
Many of these fibers run parallel to each other and exhibit coor-
dinated development (Figs 3–5), especially the IFOF and ILF, and
segments of the ARC. The strong developmental associations
between maturational properties of these tracts between the
first and sixth year of life suggest these tracts are structurally
defined early in development and thus may be important for
subsequent cognition and learning. In fact, each of these tracts
has been shown to relate to emerging cognition in the first 2
years of life in an overlapping sample (Girault et al. 2019), with
developmental changes in RD in each of these tracts in the
second year of life linked to receptive language outcomes at
age 2 (Girault et al. 2019). Taken together, this work highlights
that microstructural properties of these tracts in early postnatal
development carry important information for proximal cogni-
tion in toddlerhood and distal white matter integrity. Additional
work has demonstrated associations between such cognitive
abilities in toddlerhood and aspects of executive function and
intelligence in early childhood (Girault et al. 2018; Stephens
et al. 2018). Therefore, white matter integrity in the early years
may serve as an important biomarker of subsequent outcomes.
Future work should seek to identify longitudinal associations
between white matter properties in these tracts and cognitive
and behavioral outcomes in later childhood.

Results from both the predictive models and from the com-
parisons of tract average values across ages suggest that indi-
vidual differences in white matter microstructure are more or
less stable by 1 year of age. This pattern is similar to what
has been established for gray matter volume (Knickmeyer et al.
2008; Gilmore et al. 2012). These findings are also in line with
results from longitudinal intervention research that describes
early sensitive periods in development. For example, aspects
of nurturing and sensitive caregiving are especially important
during the first year of life (Nelson et al. 2007; Fox et al. 2011).
Additionally, analysis of resting state connectivity patterns dur-
ing the first year of life reveals that primary networks, those
that serve auditory, sensory, and motoric functions, take form
and resemble adult-like networks by 12 months of age (Gao
et al. 2015). Similarly, in terms of behavior, infants’ ability to
discriminate auditory (i.e., phonemes) and visual stimuli (i.e.,
faces of other species) narrows in terms of sensitivity and accu-
racy, becoming adult-like by the end of the first year of life
(Werker and Tees 1984; Pascalis et al. 2002; Best and McRoberts
2003; Kuhl et al. 2006). Each of these areas of research pro-
vides additional support for the importance of the first year of
life as foundational for long-term neurological and behavioral
outcomes.

One tract that was not included in the results presented
in this manuscript is the fornix, an association tract that has
been tied to a number of behavioral and psychiatric outcomes
(Tsivilis et al. 2008; Fitzsimmons et al. 2009; Wolff et al. 2012;
Douet and Chang 2015). Although a tract profile for the fornix
was generated using the tractography methods described, initial
exploration of the fornix tract average values revealed outly-
ing values and inconsistent patterns. As a result, we do not
consider the fornix values generated by these methods to be
valid and have therefore not included the findings related to
this tract in this manuscript. Other studies have reported similar
data processing concerns with the fornix and have attributed
this to the tract’s tubular shape and its location in regard to
subcortical structures (Acheson et al. 2017; Pecheva et al. 2017).
Additional white matter tracts may have also been considered

(e.g., corticothalamic projections to areas of the cortex other
than prefrontal regions). In order to limit the number of anal-
yses in this study, we opted to focus on tracts that have been
linked to various aspects of cognition. We therefore are not
presenting an exhaustive view of white matter maturation; we
have chosen to provide an overview of development within a set
of relevant tracts. Future research should examine patterns of
development and individual differences in tracts that have been
tied to other aspects of development, such as other projection
tracts, especially those that are known to mature at different
ages.

The use of DTI parameters to assess white matter microstruc-
ture has a number of limitations. First, while we have some
knowledge of how diffusion metrics change across develop-
ment, and how they relate to primary processes such as fiber
organization, premyelination, and myelination, we cannot rule
out the contribution of other confounding factors—including
crossing fibers, the myelination of crossing fibers, and partial
volume effects—on tensor estimation (Vos et al. 2011; Dubois
et al. 2014). More recently developed methods including NODDI
(Zhang et al. 2012) and diffusion kurtosis imaging (DTK; Steven
et al. 2014) offer improved algorithms for estimating local
diffusion patterns that better reflect the underlying biology
and physiology of white matter. However, NODDI and DTK
require DWI sequences that were not standard at the start of
this longitudinal imaging study in 2004. Future studies using
these advanced sequences will be needed to further clarify
our understanding of white matter development in the human
brain.

A limitation of the current study is that almost 40% of the
sample analyzed only provided data at one time point. This
is due to sample attrition as well as exclusions due to image
quality. Another potential limitation to this study is the use of a
separate atlas for the neonate data. The decision to not also map
the neonate atlas to the 1- to 2-year-old atlas (as we did with the
4- to 6-year-old atlas) was based on differences in the shape and
size of the neonate brain. Fitting the neonate white matter tracts
to the pediatric atlas would likely result in distortions that cause
inaccuracies in the tract average values calculated. Therefore,
we determined that the neonate atlas generated more accurate
representations of the tracts.

Another limitation is the aggregation of data from multiple
scanners and different DTI acquisition protocols. This concern
is an inherent limitation of longitudinal research, especially in
regard to adapting to advances in MRI technology. However,
across ages and parameters, only average 1-year AD significantly
differed across scanners/sequences. We have made every effort
to reduce potential influences of these differences by including
the scanner type and number of directions in predictive models.
In future studies that utilize data from different scanners and
sequences, we will consider the use of data harmonization
methods such as ComBat (Fortin et al. 2017). Relatively, lack of
predictive ability at the neonate time point may be partially
due to higher levels of noise and more gradients excluded on
average. The FA images for neonates have lower SNR due to less
myelination throughout the brain, and more of this age group
was scanned using the 6-direction protocol, which also has a
lower SNR. As a result, minor motion is more likely to lead to
rejection based on image quality. Lastly, the predictive models
only include a subset of subjects who provided valid data at both
6 years and at least one earlier time point, resulting in relatively
small sample sizes and models using different combinations of
subjects. Though most of the models are statistically significant



(even after correction for multiple comparisons) despite the
smaller subsamples, models lack the power to make strong
claims especially regarding tract-level differences.

Our research group is continuing to follow this longitudinal
sample with the ultimate goal of being able to track white matter
development from birth through early adolescence. Additional
research should continue to explore brain development in such
longitudinal samples in order to gain a better understanding of
individual differences over time. Further, we have limited these
analyses to tract averages, so future research should exam-
ine regional differences and patterns of development, as well
as whole-brain approaches to white matter maturation (i.e.,
TBSS; Smith et al. 2006). The methods employed in this study
should also be extended to less normative samples to determine
how patterns of development may differ in children who were
born premature, who are at high risk for psychiatric disorders,
or in twin samples. Further, steps should be taken to exam-
ine how individual patterns of development relate to cogni-
tive, behavioral, or psychiatric outcomes. Bivariate correlations
between microstructural parameters and demographic variables
of sex and maternal education suggest a potentially interesting
association with right cingulum AD. Further exploration of this
association is warranted. Although there is value in exploring
how white matter relates to these outcomes cross-sectionally,
longitudinal study designs will provide greater opportunities
for identifying early biomarkers that are related to a range of
later outcomes. Such research could then lead to additional
explorations of sensitive periods of development and the ideal
timing of early intervention programs.

This study provides unique insight into patterns of early
white matter development by connecting two previously dis-
parate bodies of research (i.e., the first 2 years vs. early childhood
through adulthood) and by exploring development in a truly
longitudinal sample of children (most previous research can
more accurately be described as cohort-sequential). Consistent
with previous research, white matter maturation during the
first year is much more prolific and occurs at a faster rate
than during subsequent years. Although our results suggest that
white matter microstructure at birth may not be helpful in terms
of identifying early biomarkers predictive of later white matter
development, by 1 year of age, individual differences as well as
overall group averages are much more consistent with 6-year
microstructure across tracts. This rapid development during the
first year, as guided by biological maturation and environmental
influences, sets the foundation for continued development.
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