249 research outputs found

    A Cu2+ (S = 1/2) Kagom\'e Antiferromagnet: MgxCu4-x(OH)6Cl2

    Full text link
    Spin-frustrated systems are one avenue for inducing macroscopic quantum states in materials. However, experimental realization of this goal has been difficult because of the lack of simple materials and, if available, the separation of the unusual magnetic properties arising from exotic magnetic states from behavior associated with chemical disorder, such as site mixing. Here we report the synthesis and magnetic properties of a new series of magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder within the kagom\'e layers is minimized, as directly measured by X-ray diffraction. Our results reveal that many of the properties of these materials and related systems are not due to disorder of the magnetic lattice but rather reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc

    High-field Phase Diagram and Spin Structure of Volborthite Cu3V2O7(OH)2/2H2O

    Full text link
    We report results of 51V NMR experiments on a high-quality powder sample of volborthite Cu3V2O7(OH)2/2H2O, a spin-1/2 Heisenberg antiferromagnet on a distorted kagome lattice. Following the previous experiments in magnetic fields BB below 12 T, the NMR measurements have been extended to higher fields up to 31 T. In addition to the two already known ordered phases (phases I and II), we found a new high-field phase (phase III) above 25 T, at which a second magnetization step has been observed. The transition from the paramagnetic phase to the antiferromagnetic phase III occurs at 26 K, which is much higher than the transition temperatures from the paramagnetic to the lower field phases I (B < 4.5 T) and II (4.5 < B < 25 T). At low temperatures, two types of the V sites are observed with different relaxation rates and line shapes in phase III as well as in phase II. Our results indicate that both phases II and III exhibit a heterogeneous spin state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order. The magnetization of the latter system exhibits a sudden increase upon entering into phase III, resulting in the second magnetization step at 26 T.We discuss the possible spin structure in phase III.Comment: 9 pages, 12 figure

    Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In cerebrospinal fluid (CSF), which is a rich source of biomarkers for neurological diseases, identification of biomarkers requires methods that allow reproducible detection of low abundance proteins. It is therefore crucial to decrease dynamic range and improve assessment of protein abundance.</p> <p>Results</p> <p>We applied LC-MS/MS to compare the performance of two CSF enrichment techniques that immunodeplete either albumin alone (IgYHSA) or 14 high-abundance proteins (IgY14). In order to estimate dynamic range of proteins identified, we measured protein abundance with APEX spectral counting method.</p> <p>Both immunodepletion methods improved the number of low-abundance proteins detected (3-fold for IgYHSA, 4-fold for IgY14). The 10 most abundant proteins following immunodepletion accounted for 41% (IgY14) and 46% (IgYHSA) of CSF protein content, whereas they accounted for 64% in non-depleted samples, thus demonstrating significant enrichment of low-abundance proteins. Defined proteomics experiment metrics showed overall good reproducibility of the two immunodepletion methods and MS analysis. Moreover, offline peptide fractionation in IgYHSA sample allowed a 4-fold increase of proteins identified (520 vs. 131 without fractionation), without hindering reproducibility.</p> <p>Conclusions</p> <p>The novelty of this study was to show the advantages and drawbacks of these methods side-to-side. Taking into account the improved detection and potential loss of non-target proteins following extensive immunodepletion, it is concluded that both depletion methods combined with spectral counting may be of interest before further fractionation, when searching for CSF biomarkers. According to the reliable identification and quantitation obtained with APEX algorithm, it may be considered as a cheap and quick alternative to study sample proteomic content.</p

    Unique Phase Transition on Spin-2 Triangular Lattice of Ag2MnO2

    Full text link
    Ag2MnO2 is studied as a possible candidate compound for an antiferromagnetic XY spin model on a triangular lattice. In spite of the large Curie-Weiss temperature of -430 K found in magnetic susceptibi-lity, Mn3+ spins with S = 2 do not undergo a conventional long-range order down to 2 K probably owing to the geometrical frustration and two dimensionality in the system. Instead, a unique phase transition is found at 80 K, where specific heat exhibits a clear sign of a second-order phase transition, while magnetic susceptibility changes smoothly without a distinct anomaly. We think that this transition is related to the chirality degree of freedom associated with a short-range order, which has been expected for the classical XY spin model on a triangular lattice. On further cooling, spin-glass-like behavior is observed below 22 K, possibly corresponding to a quasi-long-range order.Comment: to appear in J. Phys. Soc. Jpn, Vol. 77, No.

    Post-stenotic aortic dilatation

    Get PDF
    Aortic stenosis is the most common valvular heart disease affecting up to 4% of the elderly population. It can be associated with dilatation of the ascending aorta and subsequent dissection. Post-stenotic dilatation is seen in patients with AS and/or aortic regurgitation, patients with a haemodynamically normal bicuspid aortic valve and following aortic valve replacement. Controversy exists as to whether to replace the aortic root and ascending aorta at the time of aortic valve replacement, an operation that potentially carries a higher morbidity and mortality. The aetiology of post-stenotic aortic dilatation remains controversial. It may be due to haemodynamic factors caused by a stenotic valve, involving high velocity and turbulent flow downstream of the stenosis, or due to intrinsic pathology of the aortic wall. This may involve an abnormality in the process of extracellular matrix remodelling in the aortic wall including inadequate synthesis, degradation and transport of extracellular matrix proteins. This article reviews the aetiology, pathology and management of patients with post-stenotic aortic dilatation
    corecore