2,260 research outputs found

    Perturbative Evaluation of Interacting Scalar Fields on a Curved Manifold with Boundary

    Full text link
    The effects of quantum corrections to a conformally invariant scalar field theory on a curved manifold of positive constant curvature with boundary are considered in the context of a renormalisation procedure. The renormalisation of the theory to second order in the scalar self-coupling pursued herein involves explicit calculations of up to third loop-order and reveals that, in addition to the renormalisation of the scalar self-coupling and scalar field, the removal of all divergences necessitates the introduction of conformally non-invariant counterterms proportional to RΦ2 R\Phi^2 and KΦ2 K\Phi^2 in the bare scalar action as well as counterterms proportional to RK2 RK^2, R2 R^2 and RK RK in the gravitational action. The substantial backreaction effects and their relevance to the renormalisation procedure are analysed.Comment: 25 pages, 1 figure. Minor elucidations in the Appendix regarding the cut-off N0 N_0 and in p.4 regarding the gravitational action. Certain reference-related ommission corrected. To appear in Classical and Quantum Gravit

    Spherical Formulation for Diagramatic Evaluations on a Manifold with Boundary

    Full text link
    The mathematical formalism necessary for the diagramatic evaluation of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The evaluation of quantum corrections to the effective action past one-loop necessitates diagramatic techniques. Diagramatic evaluations and higher loop-order renormalisation can be best accomplished on a Riemannian manifold of constant curvature accommodating a boundary of constant extrinsic curvature. In such a context the stated evaluations can be accomplished through a consistent interpretation of the Feynman rules within the spherical formulation of the theory for which the method of images allows. To this effect, the mathematical consequences of such an interpretation are analyzed and the spherical formulation of the Feynman rules on the bounded manifold is, as a result, developed.Comment: 12 pages, references added. To appear in Classical and Quantum Gravit

    Temperature Dependence of Facet Ridges in Crystal Surfaces

    Full text link
    The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model on a honeycomb lattice is studied numerically. We focus on the facet ridge endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth in the exactly soluble square lattice BCSOS model. In our more general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops. We observe ridge lines sticking into the rough phase where thesurface orientation jumps inside the rounded part of the crystal. Moreover, the rough-to-faceted edges become first-order with a jump in surface orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical endpoints. The latter display anisotropic scaling with exponent z=3z=3 instead of familiar PT value z=2z=2.Comment: 12 pages, 19 figure

    Axial anomaly: the modern status

    Full text link
    The modern status of the problem of axial anomaly in QED and QCD is reviewed. Two methods of the derivation of the axial anomaly are presented: 1) by splitting of coordinates in the expression for the axial current and 2) by calculation of triangle diagrams, where the anomaly arises from the surface terms in momentum space. It is demonstrated, that the equivalent formulation of the anomaly can be given, as a sum rule for the structure function in dispersion representation of three point function of AVV interaction. It is argued, that such integral representation of the anomaly has some advantages in the case of description of the anomaly by contribution of hadronic states in QCD. The validity of the t'Hooft consistency condition is discussed. Few examples of the physical application of the axial anomaly are given.Comment: 17 pages, 3 figures, to be published in International Journal of Modern Physics A, few minor correction were done, two references were adde

    Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study

    Full text link
    The electromagnetic response of a pinned Abrikosov fluxoid is examined in the framework of the Bogoliubov-de Gennes formalism. The matrix elements and the selection rules for both the single photon (emission - absorption) and two photon (Raman scattering) processes are obtained. The results reveal striking asymmetries: light absorption by quasiparticle pair creation or single quasiparticle scattering can occur only if the handedness of the incident radiation is opposite to that of the vortex core states. We show how these effects will lead to nonreciprocal circular birefringence, and also predict structure in the frequency dependence of conductivity and in the differential cross section of the Raman scattering.Comment: 14 pages (RevTex

    Decoherence in ion traps due to laser intensity and phase fluctuations

    Get PDF
    We consider one source of decoherence for a single trapped ion due to intensity and phase fluctuations in the exciting laser pulses. For simplicity we assume that the stochastic processes involved are white noise processes, which enables us to give a simple master equation description of this source of decoherence. This master equation is averaged over the noise, and is sufficient to describe the results of experiments that probe the oscillations in the electronic populations as energy is exchanged between the internal and electronic motion. Our results are in good qualitative agreement with recent experiments and predict that the decoherence rate will depend on vibrational quantum number in different ways depending on which vibrational excitation sideband is used.Comment: 2 figures, submitted to PR

    The Conical Point in the Ferroelectric Six-Vertex Model

    Full text link
    We examine the last unexplored regime of the asymmetric six-vertex model: the low-temperature phase of the so-called ferroelectric model. The original publication of the exact solution, by Sutherland, Yang, and Yang, and various derivations and reviews published afterwards, do not contain many details about this regime. We study the exact solution for this model, by numerical and analytical methods. In particular, we examine the behavior of the model in the vicinity of an unusual coexistence point that we call the ``conical'' point. This point corresponds to additional singularities in the free energy that were not discussed in the original solution. We show analytically that in this point many polarizations coexist, and that unusual scaling properties hold in its vicinity.Comment: 28 pages (LaTeX); 8 postscript figures available on request ([email protected]). Submitted to Journal of Statistical Physics. SFU-DJBJDS-94-0

    Generation of nonground-state Bose-Einstein condensates by modulating atomic interactions

    Full text link
    A technique is proposed for creating nonground-state Bose-Einstein condensates in a trapping potential by means of the temporal modulation of atomic interactions. Applying a time-dependent spatially homogeneous magnetic field modifies the atomic scattering length. An alternating modulation of the scattering length excites the condensate, which, under special conditions, can be transferred to an excited nonlinear coherent mode. It is shown that there occurs a phase-transition-like behavior in the time-averaged population imbalance between the ground and excited states. The application of the suggested technique to realistic experimental conditions is analyzed and it is shown that the considered effect can be realized for experimentally available condensates.Comment: 6 pages, 2 figures, 1 tabl

    States interpolating between number and coherent states and their interaction with atomic systems

    Full text link
    Using the eigenvalue definition of binomial states we construct new intermediate number-coherent states which reduce to number and coherent states in two different limits. We reveal the connection of these intermediate states with photon-added coherent states and investigate their non-classical properties and quasi-probability distributions in detail. It is of interest to note that these new states, which interpolate between coherent states and number states, neither of which exhibit squeezing, are nevertheless squeezed states. A scheme to produce these states is proposed. We also study the interaction of these states with atomic systems in the framework of the two-photon Jaynes-Cummings model, and describe the response of the atomic system as it varies between the pure Rabi oscillation and the collapse-revival mode and investigate field observables such as photon number distribution, entropy and the Q-function.Comment: 26 pages, 29 EPS figures, Latex, Accepted for publication in J.Phys.

    Constraints on relaxation rates for N-level quantum systems

    Get PDF
    We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, non-trivial constraints on the pure dephasing rates for N>2. Explicit experimentally testable inequality constraints for the decoherence rates are derived for three and four-level systems, and the implications of the results are discussed for generic ladder-, Lambda- and V-systems, and transitions between degenerate energy levels.Comment: 10 pages, RevTeX, 4 figures (eps/pdf
    corecore