1,887 research outputs found

    Effect of ancilla's structure on quantum error correction using the 7-qubit Calderbank-Shor-Steane code

    Full text link
    In this work we discuss the ability of different types of ancillas to control the decoherence of a qubit interacting with an environment. The error is introduced into the numerical simulation via a depolarizing isotropic channel. After the correction we calculate the fidelity as a quality criterion for the qubit recovered. We observe that a recovery method with a three-qubit ancilla provides reasonable good results bearing in mind its economy. If we want to go further, we have to use fault-tolerant ancillas with a high degree of parallelism, even if this condition implies introducing new ancilla verification qubits.Comment: 24 pages, 10 Figures included. Accepted in Phys. Rev. A 200

    An Universal Quantum Network - Quantum CPU

    Get PDF
    An universal quantum network which can implement a general quantum computing is proposed. In this sense, it can be called the quantum central processing unit (QCPU). For a given quantum computing, its realization of QCPU is just its quantum network. QCPU is standard and easy-assemble because it only has two kinds of basic elements and two auxiliary elements. QCPU and its realizations are scalable, that is, they can be connected together, and so they can construct the whole quantum network to implement the general quantum algorithm and quantum simulating procedure.Comment: 8 pages, Revised versio

    Fault-Tolerant Error Correction with Efficient Quantum Codes

    Full text link
    We exhibit a simple, systematic procedure for detecting and correcting errors using any of the recently reported quantum error-correcting codes. The procedure is shown explicitly for a code in which one qubit is mapped into five. The quantum networks obtained are fault tolerant, that is, they can function successfully even if errors occur during the error correction. Our construction is derived using a recently introduced group-theoretic framework for unifying all known quantum codes.Comment: 12 pages REVTeX, 1 ps figure included. Minor additions and revision

    Topological Quantum Error Correction with Optimal Encoding Rate

    Full text link
    We prove the existence of topological quantum error correcting codes with encoding rates k/nk/n asymptotically approaching the maximum possible value. Explicit constructions of these topological codes are presented using surfaces of arbitrary genus. We find a class of regular toric codes that are optimal. For physical implementations, we present planar topological codes.Comment: REVTEX4 file, 5 figure

    Quantum CPU and Quantum Algorithm

    Get PDF
    Making use of an universal quantum network -- QCPU proposed by me\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.Comment: 8 pages, Revised Versio

    Exact Quantum Search by Parallel Unitary Discrimination Schemes

    Full text link
    We study the unsorted database search problem with items NN from the viewpoint of unitary discrimination. Instead of considering the famous O(N)O(\sqrt{N}) Grover's the bounded-error algorithm for the original problem, we seek for the results about the exact algorithms, i.e. the ones succeed with certainty. Under the standard oracle model j(1)δτjj><j\sum_j (-1)^{\delta_{\tau j}}|j>< j|, we demonstrate a tight lower bound 2/3N+o(N){2/3}N+o(N) of the number of queries for any parallel scheme with unentangled input states. With the assistance of entanglement, we obtain a general lower bound 1/2(NN){1/2}(N-\sqrt{N}). We provide concrete examples to illustrate our results. In particular, we show that the case of N=6 can be solved exactly with only two queries by using a bipartite entangled input state. Our results indicate that in the standard oracle model the complexity of exact quantum search with one unique solution can be strictly less than that of the calculation of OR function.Comment: 8 pages (revtex4), 6 figures. Revised version with some typo error corrections and some clearer statement. Accepted by Phys.Rev.A .Comments are welcome

    Quantum computing of delocalization in small-world networks

    Full text link
    We study a quantum small-world network with disorder and show that the system exhibits a delocalization transition. A quantum algorithm is built up which simulates the evolution operator of the model in a polynomial number of gates for exponential number of vertices in the network. The total computational gain is shown to depend on the parameters of the network and a larger than quadratic speed-up can be reached. We also investigate the robustness of the algorithm in presence of imperfections.Comment: 4 pages, 5 figures, research done at http://www.quantware.ups-tlse.fr

    A Theory of Fault-Tolerant Quantum Computation

    Full text link
    In order to use quantum error-correcting codes to actually improve the performance of a quantum computer, it is necessary to be able to perform operations fault-tolerantly on encoded states. I present a general theory of fault-tolerant operations based on symmetries of the code stabilizer. This allows a straightforward determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow universal computation on any stabilizer cod

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure

    Noise in Grover's Quantum Search Algorithm

    Full text link
    Grover's quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grover's algorithm. We study the algorithm's intrinsic robustness when no quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency when noise is added, but does not slow down. We also study the maximal noise under which the iterated quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales with the size of the phone book as N^-2/3.Comment: 17 pages, 2 eps figures. Revised version. To be published in PRA, December 199
    corecore