54 research outputs found

    Feasibility Analysis Of Retrofitting Central Illinois Regional Airport With Solar Photovoltaic Arrays

    Get PDF
    With the current decline of fossil fuel production, there is a growing political push towards a more environmentally sustainable way to harness clean energy. To address this issue, we aim to create a construction bid, where solar photovoltaic is implemented on unused land at Central Illinois Regional Airport. Many Municipal airports, often as a consequence of the public bidding domain, where the lowest and most responsible bidder is awarded the project, properties are left with an abundance of unused land that could be utilized for profit maximization. In order to provide a more descriptive framework for a change in energy management, we decided that a bid proposal is the best option because it is implemented in actual solar construction projects. The following construction bid encompasses the elements of a bid proposal to include financial analysis, satellite mapping and array layout, estimation, fulfillment of FAA regulations, and safety mitigation procedures. This research aims to be an economic and environmentally driven framework for institutions should they be interested in proposing a photovoltaic retrofit of their own.https://ir.library.illinoisstate.edu/urs2021tec/1004/thumbnail.jp

    Nobody’s job : attending the birth of a new small- scale water tool for the Prairies

    Get PDF
    Canada First Research Excellence Fund, CFREF 2015-00010First person account of interactions involved in developing a hydrological planning tool to support small infrastructure planning in the Canadian prairie region

    Review of Lake Diefenbaker Operations 2010-2011 : Centre for Hydrology Final Report to the Saskatchewan Watershed Authority

    Get PDF
    Saskatchewan Watershed AuthorityNon-Peer ReviewedAnalysis of the Lake Diefenbaker operation and hydrometeorological events of 2010-2011 suggests that minimum reservoir levels have been rising over time and were particularly high in the winter and spring of 2010-2011 resulting in a greater risk of high outflow events if predicted inflows were not accurate. Rules and policies for operating Gardiner Dam based on verified information and priority of operations to minimize cumulative risk were not in place to optimize dam operations after several mid winter events restricted outflows from the dam. Unfortunately inflows were underpredicted in 2011 due to underestimation of upstream snowpacks, inability to quantify ungauged inflows from prairie runoff, inadequate available information on upstream and local meteorological conditions, and reliance on statistical forecast procedures based on previous climate conditions. The impact of outflows on downstream areas was difficult to quantify because of an underestimation of outflows from the Coteau Creek hydroelectric station at Gardiner Dam and the lack of sufficient hydrometric stations downstream. Whilst water supply goals for the reservoir were met in the period, and downstream flood extent was cut in half; the acreage duration of flooding between Moon Lake and Saskatoon was not reduced by dam operation and the annual peak flow downstream on the Saskatchewan River was not reduced by dam operation. The overall evaluation of SWA operation of Lake Diefenbaker in light of the operational objectives understood at the time is that SWA forecasting staff did a superb job with the limited tools and resources, complex operating system and unspecified operating rules available to them

    Development of the Prairie Hydrology Design and Analysis Product (PHyDAP)

    Get PDF
    Global Water Futures, Environment and Climate Change CanadaCurrently, there are no tools which account for the complexities of prairie hydrology and hydrography available to hydrological practitioners for calculating return-period flows and flooding at small scales on the Canadian Prairies. The need for such tools is especially great due to non-stationarity from the effects of climate change and surface drainage. The Prairie Hydrology Design and Analysis Product (PHyDAP) uses the research results of the Global Water Futures Prairie Water Project to produce a spatial dataset which will allow practitioners to determine return-period flows and flooded areas in a scientifically defensible manner, while incorporating changes in the local climate and land use

    Informing the Vermilion River Watershed Plan through Application of the Cold Regions Hydrological Model Platform

    Get PDF
    Prepared for Ducks Unlimited Canada and North Saskatchewan Watershed Alliance.Non-Peer ReviewedThe Vermilion River Basin has been identified as one of most altered basins in the North Saskatchewan River Basin by the North Saskatchewan Watershed Alliance. Of all the basin altering activities, wetland drainage is thought to be the most important one in impacting watershed hydrology. The Cold Regions Hydrological Model (CRHM) has had recent developments that make it particularly appropriate to evaluate the impacts of Canadian Prairie wetlands on hydrology. In light of the importance of wetlands in the Vermilion River Basin and the capability of CRHM, this study had five objectives: 1) Setup CRHM for the Vermilion River Basin and conduct preliminary tests using local meteorological data. 2) Develop an improved wetland module that incorporates the dynamics of drained wetland complexes in the physically based, modular Prairie Hydrological Model of CRHM. 3) Refine CRHM results using advances in the improved wetland module, additional parameter data and other adjustments as necessary. 4) Demonstrate scenarios/sensitivity of landscape components such as wetlands and uplands to support planning decisions and make recommendations for land and watershed management. 5) Apply CRHM results to fortify recommendations and support decision making during initial plan implementation. The objectives were addressed with the following methodology. Existing data on precipitation, hydrometeorology, wetland characteristics, stage and extent, drainage pattern and land cover in the Vermilion River Basin were compiled. The existing CRHM Prairie Hydrological Model formulation was set up on the basin and test runs conducted and compared to streamflow hydrographs over multiple years. Then, improvements to the Prairie Hydrological Model formulation of CRHM were made so that CRHM could simulate sequences of many wetlands of varying sizes. The improved model was evaluated through hydrological simulation and quantitative analysis of streamflow and then used in sensitivity analysis of the effect of changing wetland drainage/restoration on streamflow for the Vermilion River. The model was then used to evaluate wetland manipulation and climate scenarios to fortify recommendations, explore options and support decision making for the implementation of the Vermilion watershed plan. The streamflow response of the Vermilion River Basin at its mouth was found to be dominated by channel hydraulics and the control structures in the lower basin and so it is influenced by wetlands only to the extent that the management regime of these control structures is affected by upstream hydrological behaviour of the tributaries with respect to volume and timing of streamflow inputs to the structures. Changes in the upper basin streamflows are more likely to be controlled by changes in the basin hydrological processes rather than in-stream water management and/or channel modifications and therefore the upper basin streamflows are more likely to show the effects of the manipulation of wetland storage

    WDPM: the Wetland DEM Ponding Model

    Get PDF
    Canada First Research Excellence Fund’s Global Water Futures programme, Natural Sciences and Engineering Research Council of Canada’s Discovery Grants programme and by Agriculture and Agri-food CanadaPeer ReviewedThe hydrography of the Canadian Prairies and adjacent northern US Great Plains is unusual in that the landscape is flat and recently formed due to the effects of pleistocene glaciation and a semi-arid climate since holocene deglaciation. Therefore, there has not been sufficient energy, time, or runoff water to carve typical dendritic surface water drainage networks in many locations. In these regions, runoff is often detented and sometimes stored by the millions of depressions (known locally as “potholes” or “sloughs”) that cover the landscape. Conventional hydrological models are unable to simulate the spatial distribution of ponded water in prairie basins dominated by depressional storage. When the depressions are filled, the detented water may overflow to another depression, through a process known as “fill and spill” (Spence & Woo, 2003). Therefore, the fraction of a depression-dominated prairie basin that contributes flow to the outlet changes dynamically with the state of water storage within the basin. The WDPM simulates the spatial distribution of ponded water, as it is added, removed or drained, and can be used to calculate the changing connected/contributing fraction of a prairie basin

    Development of a Snowmelt Runoff Model for the Lower Smoky River

    Get PDF
    Prepared for Alberta Environment and Sustainable Resource Development, Edmonton.Non-Peer ReviewedThe Smoky River tributary of the Peace River has an ungauged (in real-time) basin area of 23,769 km2, corresponding to 46% of its basin area of 51,839 km2 . The purpose of this study was to develop a model to simulate the daily spring ungauged flows of the Smoky River and its main tributary, the Little Smoky River for recent periods using measured meteorological data and forecast periods using the outputs of a numerical weather forecast model. A physically-based model of the ungauged local flows contributing to the Smoky River at Watino and the Little Smoky River at Guy, the Lower Smoky River Model (LSRM), was developed using the CRHM platform. The model was deployed to 26 ungauged sub-basins, from which discharges were routed and accumulated to produce the ungauged discharges at Guy and Watino. The LSRM modelled discharge was evaluated to estimate the discharge of the Smoky River and Little Smoky River in an operational setting with measured meteorological observations. Results from this comparison were very good with a high degree of hydrograph predictability, small bias in flow estimation, and very good prediction of peak daily discharge and excellent prediction of the timing of peak daily discharge. The results were somewhat better for the Smoky River than for the Little Smoky River, showing the effect of increasing basin size in compensating for inadequate precipitation observation density and/or errors in model structure or parameterization. The model has not yet been tested in an operational setting during a spring snowmelt event and its full capabilities and usefulness cannot be assessed until it has been tested in such a setting

    Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach

    Get PDF
    Canada First Research Excellence Fund (Global Water Futures/Prairie Water)Peer ReviewedWetland drainage has been pervasive in the North American Prairie Pothole Region. There is strong evidence that this drainage increases the hydrological connectivity of previously isolated wetlands and, in turn, runoff response to snowmelt and rainfall. It can be hard to disentangle the role of climate from the influence of wetland drainage in observed records. In this study, a basin-classification-based virtual modelling approach is described that can isolate these effects on runoff regimes. The basin class which was examined, entitled Pothole Till, extends throughout much of Canada’s portion of the Prairie Pothole Region. Three knowledge gaps were addressed. First, it was determined that the spatial pattern in which wetlands are drained has little influence on how much the runoff regime was altered. Second, no threshold could be identified below which wetland drainage has no effect on the runoff regime, with drainage thresholds as low as 10 % in the area being evaluated. Third, wetter regions were less sensitive to drainage as they tend to be better hydrologically connected, even in the absence of drainage. Low flows were the least affected by drainage. Conversely, during extremely wet years, runoff depths could double as the result of complete wetland removal. Simulated median annual runoff depths were the most responsive, potentially tripling under typical conditions with high degrees of wet- land drainage. As storage capacity is removed from the landscape through wetland drainage, the size of the storage deficit of median years begins to decrease and to converge on those of the extreme wet years. Model simulations of flood frequency suggest that, because of these changes in antecedent conditions, precipitation that once could generate a median event with wetland drainage can generate what would have been a maximum event without wetland drainage. The advantage of the basin-classification-based virtual modelling approach employed here is that it simulated a long period that included a wide variety of precipitation and antecedent storage conditions across a diversity of wetland complexes. This has allowed seemingly disparate results of past research to be put into context and finds that conflicting results are often only because of differences in spatial scale and temporal scope of investigation. A conceptual framework is provided that shows, in general, how annual runoff in different climatic and drainage situations will likely respond to wetland drainage in the Prairie Pothole Region
    • …
    corecore