34 research outputs found

    Characteristics of ammonia, acid gases, and PM<sub>2.5</sub> for three typical land-use types in the North China Plain

    Get PDF
    Air pollution is one of the most serious environmental problems in China due to its rapid economic development alongside a very large consumption of fossil fuel, particularly in the North China Plain (NCP). During the period 2011–2014, we integrated active and passive sampling methods to perform continuous measurements of NH3, HNO3, NO2, and PM2.5 at two urban, one suburban, and two rural sites in the NCP. The annual average concentrations of NH3, NO2, and HNO3 across the five sites were in the ranges 8.5–23.0, 22.2–50.5, and 5.5–9.7 ÎŒg m−3, respectively, showing no significant spatial differences for NH3 and HNO3 but significantly higher NO2 concentration at the urban sites. At each site, annual average concentrations of NH3 and NO2 showed increasing and decreasing trends, respectively, while there was no obvious trend in annual HNO3 concentrations. Daily PM2.5 concentrations ranged from 11.8 to 621.0 ÎŒg m−3 at the urban site, from 19.8 to 692.9 ÎŒg m−3 at the suburban site, and from 23.9 to 754.5 ÎŒg m−3 at the two rural sites, with more than 70 % of sampling days exceeding 75 ÎŒg m−3. Concentrations of water-soluble ions in PM2.5 ranked differently between the non-rural and rural sites. The three dominant ions were NH4 +, NO3 −, and SO4 2− and mainly existed as (NH4)2SO4, NH4HSO4, and NH4NO3, and their concentrations averaged 48.6 ± 44.9, 41.2 ± 40.8, and 49.6 ± 35.9 ÎŒg m−3 at the urban, suburban, and rural sites, respectively. Ion balance calculations indicated that PM2.5 was neutral at the non-rural sites but acidic at the rural sites. Seasonal variations of the gases and aerosols exhibited different patterns, depending on source emission strength and meteorological conditions. Our results suggest that a feasible pathway to control PM2.5 pollution in the NCP should target ammonia and acid gases together

    High-Efficiency Solar Desalination Accompanying Electrocatalytic Conversions of Desalted Chloride and Captured Carbon Dioxide

    Get PDF
    © 2019 American Chemical Society. The sustainability of conventional water- and energy-associated systems is being examined in terms of water-energy nexus. This study presents a high-efficiency, off-grid solar desalination system for saline water (salinities 10 and 36 g L-1) that accompanies electrocatalytic oxidations of chloride and, consequently, urine via oxidized chlorine species while concomitantly producing formate from captured CO2. A variable number of desalination cell arrays is placed between a double-layered nanoparticulate titania electrocatalyst (Ti/IrxTa1-xOy/nano-TiO2; denoted as n-TEC) anode and a porous dendrite Bi cathode. A potential bias to the n-TEC and Bi pairs initiates the transport of chloride and sodium ions in the saline water to the anode and cathode cells, respectively, at an ion transport efficiency of ∌100% and a specific energy consumption of ∌1.9 kWh m-3. During the desalination, the n-TEC anode catalyzes the conversion of the transported chloride into reactive chlorine species, which, in turn, mediate the decomposition of urine in the anode cell. Concurrent with the anodic process, formate is continuously produced at a faradic efficiency of >95% from the CO2 captured in the catholyte. When a photovoltaic cell (power conversion efficiency of ∌18%) is coupled to the stack device with five desalination cells, the three independent processes synergistically proceed at a maximum overall solar-to-desalination system efficiency of ∌16% and a maximum solar-to-formate chemical energy conversion efficiency of ∌7%

    Disturbance-mediated competition: The interacting roles of inundation regime and mechanical and herbicidal control in determining native and invasive plant abundance

    No full text
    Disturbance is a key component of many successful plant invasions. However, interactions among natural and anthropogenic disturbances and effects of these interacting disturbances on invasive plants and desired vegetation are rarely examined. We investigated the effect of anthropogenic disturbance (herbicidal and mechanical) along a natural inundation gradient (20-282 days) on the biomass and resource allocation of the invasive wetland plant, alligator weed (Alternanthera philoxeroides), and two co-occurring competitor plants, the introduced grass, kikuyu (Pennisetum clandestinum), and the native grass, couch (Cynodon dactylon), over a 2-year period. In the absence of additional disturbance, kikuyu biomass was negatively affected, alligator weed biomass was positively affected, and couch biomass was not affected by inundation disturbance. In addition, kikuyu was not affected by the selective removal of alligator weed, while couch increased in wetter habitats where kikuyu was absent due to inundation stress. This suggests that kikuyu is a superior competitor in drier habitats and inundation facilitates the invasion of alligator weed, while couch is an inferior competitor to both kikuyu and alligator weed and is therefore suppressed across its entire niche by these two introduced species. Mowing alone had no effect on the biomass of the species, suggesting the plants are equally tolerant of shoot removal. Selective herbicide reduced alligator weed biomass by 97.5% and the combination of selective herbicide and mowing reduced the biomass of alligator weed significantly more than herbicide alone, by 98.6% compared with un-manipulated controls. To predict community change and prevent sequential exotic plant invasions after weed removal, it is necessary to consider the interacting effects of disturbance and the niche space of invasive species in the local propagule pool

    Electrochemical Biosensors for miRNA Detection

    No full text
    MicroRNAs (miRNAs) are intensely studied as candidates for diagnostic and prognostic biomarkers. They are naturally occurring small RNAs (approximately 22 nucleotides in length) that act as regulators of protein translation. Because many diseases are caused by the misregulated activity of proteins, miRNAs have been implicated in a number of diseases including a broad range of cancers, heart disease, and immunological and neurological diseases. A great deal of effort, therefore, has been devoted to developing analytical methods for miRNA analysis. The consideration when selecting existing or designing new methods for miRNA analysis includes sensitivity and multiplexing capability without PCR. In this chapter, novel electrochemical strategies for miRNA detection and quantification will be reviewed

    Interactions between Herbs and Conventional Drugs: Overview of the Clinical Data

    No full text

    New trends in the electrochemical sensing of dopamine

    No full text

    Current Molecular Imaging of Spinal Tumors in Clinical Practice

    No full text
    Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target’s function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors
    corecore