31 research outputs found

    Metallurgical risk factors in grade 91 steel

    Get PDF

    Transport mechanisms during the high-temperature oxidation of ternary γ/γ′ Co-base model alloys

    Get PDF
    Over a decade ago, γ′-strengthened Co-base alloys were introduced as potential replacement for conventional Ni-base Superalloys. Insufficient resistance against high-temperature oxidation restricts the number of possible applications. The present study contributes to the understanding of elementary mechanisms such as material transport during extensive oxide scale formation on γ/γ′ Co-base alloys to explain their inferior oxidation behaviour. A clear dependency of the scale growth kinetics on W content and oxidation temperature is demonstrated by thermogravimetry and subsequent analysis of cross-sections. By means of electron backscattered diffraction (EBSD), the evolution of microstructures in the outer oxide layers were examined depending on the oxidation temperature. Sequential exposure of samples in 16O2- and 18O2-containing atmospheres proved counter-current material transport. The combination of focused ion beam (FIB) and secondary ion mass spectroscopy (SIMS) visualised the formation of new oxide phases mainly on the outer and inner interface of the oxide scale. An elaborate review of available transport paths for oxygen is given during the discussion of results. All experimental findings were combined to a coherent explanation of the inferior oxidation resistance of this relatively new class of high-temperature materials at temperatures above 800 °C

    Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy : from 2D to 3D assessment

    Get PDF
    Effects of oxygen-related damage (i.e. oxidation and dynamic embrittlement) on fatigue crack propagation behavior in an advanced disc alloy have been assessed in air and vacuum under dwell-fatigue conditions at 725 oC. The enhanced fatigue crack propagation is closely related to oxygen-related damage at/ahead of the crack tip, which is determined by the testing environment, the dwell period and the crack propagation rate itself based on two dimensional (2D) observation of the crack tip in an optical microscope and scanning electron microscope. X-ray computed tomography has also been employed to examine the differences between three dimension (3D) crack morphology in air and vacuum conditions, and the crack features have been quantified in terms of crack opening displacements, secondary cracks and uncracked bridging ligaments. The results show that the fatigue crack propagation rate is related to the amount of secondary cracks, and the crack length increment in a loading cycle is related to the breaking/cracking of the uncracked bridging ligaments within the discontinuous cracking zone ahead of the crack tip as oxygen-related damage preferentially occurs in these highly deformed regions. By combination of 3D X-ray computed tomography and traditional 2D observation, a deeper understanding is provided of the mechanisms of oxygen-enhanced fatigue crack propagation behavior

    Scanning electrochemical cell microscopy : a versatile method for highly localised corrosion related measurements on metal surfaces

    Get PDF
    The development of tools that can probe corrosion related phenomena at the (sub)microscale is recognized to be increasingly important in order to understand the surface structural factors (grain orientation, inclusions etc.) that control the (electro)chemical stability (corrosion susceptibility, pitting, passivity etc.) of metal surfaces. Herein we consider the application of scanning electrochemical cell microscopy (SECCM), a relatively new member of the electrochemical droplet cell (EDC) family, for corrosion research and demonstrate the power of this technique for resolving structure and activity at the (sub)microscale. Hundreds of spatially-resolved (2 μm droplet size) potentiodynamic polarization experiments have been carried out on the several hours timescale and correlated to complementary structural information from electron backscatter diffraction (EBSD) and energy dispersive x-ray spectroscopy (EDS) in order to determine the effect of grain orientation and inclusions on electrochemical processes at low carbon steel in neutral solution (10 mM KNO3). Through this approach, it has been shown unequivocally that for the low index planes, anodic currents in the passive region (an indicator of corrosion susceptibility) are greatest on (101) planes compared to (100) and (111) planes. Furthermore, individual sub-micron MnS inclusions have been probed and shown to undergo active dissolution followed by rapid repassivation. This study demonstrates the high versatility of SECCM and the considerable potential of this technique for addressing structure-activity problems in corrosion and electromaterials science

    Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy : stress assisted grain boundary oxidation or dynamic embrittlment?

    Get PDF
    The role of oxygen in enhanced fatigue cracking in an advanced Ni-based superalloy for turbine disc application has been evaluated in fatigue crack initiation and propagation stages along with static oxidation tests. It is found that the grain boundary oxide intrusion has a layered structure. The microstructure- and deformation-dependent grain boundary oxidation dominates the fatigue crack initiation and early propagation processes. As the crack propagates, this contribution arising from oxidation damage may gradually be overtaken by dynamic embrittlement processes until the mechanical damage outstrips the oxygen-related damage, resulting in a transition from intergranular to transgranular crack propagation

    Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel

    Get PDF
    The properties of steels and other alloys are often tailored to suit specific applications through the manipulation of microstructure (e.g., grain structure). Such microscopic heterogeneities are also known to modulate corrosion susceptibility/resistance, but the exact dependency remains unclear, largely due to the challenge of probing and correlating local electrochemistry and structure at complex (alloy) surfaces. Herein, high-resolution scanning electrochemical cell microscopy (SECCM) is employed to perform spatially-resolved potentiodynamic polarisation measurements, which, when correlated to co-located structural information from electron backscatter diffraction (EBSD), analytical scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM), reveal the relationship between anodic metal (iron) dissolution and the crystallographic orientation of low carbon steel in aqueous sulfuric acid (pH 2.3). Considering hundreds of individual measurements made on each of the low-index planes of body-centred cubic (bcc) low carbon steel, the rate of iron dissolution, and thus overall corrosion susceptibility, increases in the order (101) < (111) < (100). These results are rationalized by complementary density functional theory (DFT) calculations, where the experimental rate of iron dissolution correlates with the energy required to remove (and ionise) one iron atom at the surface of a lattice, calculated for each low index orientation. Overall, this study further demonstrates how nanometre-resolved electrochemical techniques such as SECCM can be effectively utilised to vastly improve the understanding of structure-function in corrosion science, particularly when combined with complementary, co-located structural characterisation (EBSD, STEM etc.) and computational analysis (DFT)

    A novel experimental set-up for in-situ microstructural characterization during continuous strain path change

    Get PDF
    Strain path change is a typical phenomenon during continuous stamping operations of sheet metal for a variety of applications including automotive body parts. During stamping, a punch continuously deforms a metal sheet to produce a desired geometry while following various strain path transitions depending on overall design of the stamping process. The strain path change can potentially alter the expected forming limit of the material. Previous researchers investigated the effect of changing strain path by loading sample in two distinct steps. Typically, between the steps the sample is unloaded before being re-loaded in the new strain path. This practice reflects the key challenge in elucidating this strain path dependent deformation, which is the ability to control the strain path change in a single deformation stage in an experimental set-up. In this work, a novel testing rig and specimen geometry that is capable of changing the strain path of a sample continuously without unloading the specimen were conceptualised, modelled and subsequently manufactured. Using this apparatus, the specimen was deformed in the uniaxial strain path in the first step before being deformed biaxially without unloading in between the steps. Thus, the apparatus ensures that the sample undergoes a continuous strain path change without unloading between the steps. The size of this mechanical test rig permits it to be placed inside a scanning electron microscope (SEM) chamber in order to study strain path transition in-situ to highlight strain localization and related microstructural changes in real time. Utilizing this test set-up, strain path change and corresponding strain values along each strain path were evaluated. The changes in material microstructure were concurrently investigated using in-situ SEM and electron back scattered diffraction (EBSD) analysis

    Effects of oxidation on fatigue crack initiation and propagation in an advanced disc alloy

    Get PDF
    Powder metallurgy Ni-based superalloys are widely used for aeroengine turbine disc application due to their exceptional strength properties at elevated temperatures, good fatigue and creep performance as well as excellent corrosion and oxidation resistance. However, oxygen enhanced fatigue crack initiation and intergranular propagation at elevated temperatures in air is commonly observed in aeroengine turbine disc superalloys under dwell fatigue testing conditions [1-7], and this phenomenon is usually ascribed to either decohesion/reduction in cohesion strength of grain boundary (GB) due to dynamic embrittlement [8, 9] or GB oxide cracking caused by stress assisted grain boundary oxidation (SAGBO) [5, 10-12]. Although the influence of oxygen on fatigue crack initiation and propagation has been intensively studied, the underlying mechanism for the oxygen-assisted fatigue failure process is still not clear due to the complex composition of disc alloy and the interaction between environmental attack and mechanical load. In this study, fatigue tests were conducted on the Low Solvus, High Refractory (LSHR) alloy designed by NASA for turbine disc application, with a particular focus on studying the influence of the formation of GB oxides on fatigue crack initiation and propagation processes

    In-situ study of strain and texture evolution during continuous strain path change

    Get PDF
    Automotive stamping is a multi-stage process where a sheet material is drawn in first stage and then redrawn, flanged and pierced in subsequent stages. In the first draw stage, continuous strain path change is induced in the material while a discontinuous strain path change occurs when the material is processed in the subsequent stages of a multi-stage stamping operation. The strain path transition can potentially alter the forming limit of the material. Previous research has investigated the effect of the discontinuous mode of strain path change by loading the sample in one strain path, unloading it, then reloading it in a second path. Thus, discontinuous strain path change was obtained. In this work, the effect of continuous strain path change was investigated with a novel experimental design that allowed cruciform samples to change strain path continuously without unloading. The work was carried out in two stages. In the first stage, the design of the cruciform sample was verified with finite element modelling to ensure the occurrence of continuous strain path change and this was validated experimentally using DX54 material by capturing full-field strain measurements data using digital image correlation technique. The size of the experimental apparatus permitted it to be placed inside a scanning electron microscope chamber. In the second stage, the validated test method was used to evaluate microstructural changes during the deformation including full-field strain and texture evolution. The micro-strain evolution showed rotation of strain bands while the texture evolution conveyed grain rotation during continuous strain path change
    corecore