59 research outputs found

    MMIC low-noise amplifiers and applications above 100 GHz

    Get PDF
    In this paper we will present recent work on low noise amplifiers developed for very high frequencies above 100 GHz. These amplifiers were developed with a unique InP-based HEMT MMIC process. The amplifiers have been developed for both cryogenic and room temperature amplifier applications with state-of-art performance demonstrated from 100 GHz to 215 GHz

    A theoretical study of the response of vascular tumours to different types of chemotherapy

    Get PDF
    In this paper we formulate and explore a mathematical model to study continuous infusion of a vascular tumour with isolated and combined blood-borne chemotherapies. The mathematical model comprises a system of nonlinear partial differential equations that describe the evolution of the healthy (host) cells, the tumour cells and the tumour vasculature, coupled with distribution of a generic angiogenic stimulant (TAF) and blood-borne oxygen. A novel aspect of our model is the presence of blood-borne chemotherapeutic drugs which target different aspects of tumour growth (cf. proliferating cells, the angiogenic stimulant or the tumour vasculature). We run exhaustive numerical simulations in order to compare vascular tumour growth before and following therapy. Our results suggest that continuous exposure to anti-proliferative drug will result in the vascular tumour being cleared, becoming growth-arrested or growing at a reduced rate, the outcome depending on the drug’s potency and its rate of uptake. When the angiogenic stimulant or the tumour vasculature are targeted by the therapy, tumour elimination can not occur: at best vascular growth is retarded and the tumour reverts to an avascular form. Application of a combined treatment that destroys the vasculature and the TAF, yields results that resemble those achieved following successful treatment with anti-TAF or anti-vascular therapy. In contrast, combining anti-proliferative therapy with anti-TAF or antivascular therapy can eliminate the vascular tumour. In conclusion, our results suggest that tumour growth and the time of tumour clearance are highly sensitive to the specific combinations of anti-proliferative, anti-TAF and anti-vascular drugs

    MMIC low-noise amplifiers and applications above 100 GHz

    Get PDF
    In this paper we will present recent work on low noise amplifiers developed for very high frequencies above 100 GHz. These amplifiers were developed with a unique InP-based HEMT MMIC process. The amplifiers have been developed for both cryogenic and room temperature amplifier applications with state-of-art performance demonstrated from 100 GHz to 215 GHz

    Suppression of Radiation-Induced Salivary Gland Dysfunction by IGF-1

    Get PDF
    Radiation is a primary or secondary therapeutic modality for treatment of head and neck cancer. A common side effect of irradiation to the neck and neck region is xerostomia caused by salivary gland dysfunction. Approximately 40,000 new cases of xerostomia result from radiation treatment in the United States each year. The ensuing salivary gland hypofunction results in significant morbidity and diminishes the effectiveness of anti-cancer therapies as well as the quality of life for these patients. Previous studies in a rat model have shown no correlation between induction of apoptosis in the salivary gland and either the immediate or chronic decrease in salivary function following gamma-radiation treatment.A significant level of apoptosis can be detected in the salivary glands of FVB mice following gamma-radiation treatment of the head and neck and this apoptosis is suppressed in transgenic mice expressing an activated mutant of Akt (myr-Akt1). Importantly, this suppression of apoptosis in myr-Akt1 mice preserves salivary function, as measured by saliva output, three and thirty days after gamma-radiation treatment. In order to translate these studies into a preclinal model we found that intravenous injection of IGF1 stimulated activation of endogenous Akt in the salivary glands in vivo. A single injection of IGF1 prior to exposure to gamma-radiation diminishes salivary acinar cell apoptosis and completely preserves salivary gland function three and thirty days following irradiation.These studies suggest that apoptosis of salivary acinar cells underlies salivary gland hypofunction occurring secondary to radiation of the head and neck region. Targeted delivery of IGF1 to the salivary gland of patients receiving head and neck irradiation may be useful in reducing or eliminating xerostomia and restoring quality of life to these patients

    A Three Species Model to Simulate Application of Hyperbaric Oxygen Therapy to Chronic Wounds

    Get PDF
    Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the cost-effectiveness of this therapy
    • …
    corecore