36 research outputs found

    Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study

    No full text
    Medical technological advancements have led to the creation of various large datasets with numerous attributes. The presence of redundant and irrelevant features in datasets negatively influences algorithms and leads to decreases in the performance of the algorithms. Using effective features in data mining and analyzing tasks such as classification can increase the accuracy of the results and relevant decisions made by decision-makers using them. This increase can become more acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired metaheuristics show superior performance in finding optimal feature subsets in the literature. As a seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer (SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped transfer functions while the search space stays continuous. The suggested algorithms are compared to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to the comparative algorithms, the gained results demonstrate that using both proposed BAO variants can improve the classification accuracy on these medical datasets. The proposed algorithm is also tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative algorithms regarding the least number of selected features with the highest accuracy

    B-MFO: A Binary Moth-Flame Optimization for Feature Selection from Medical Datasets

    No full text
    Advancements in medical technology have created numerous large datasets including many features. Usually, all captured features are not necessary, and there are redundant and irrelevant features, which reduce the performance of algorithms. To tackle this challenge, many metaheuristic algorithms are used to select effective features. However, most of them are not effective and scalable enough to select effective features from large medical datasets as well as small ones. Therefore, in this paper, a binary moth-flame optimization (B-MFO) is proposed to select effective features from small and large medical datasets. Three categories of B-MFO were developed using S-shaped, V-shaped, and U-shaped transfer functions to convert the canonical MFO from continuous to binary. These categories of B-MFO were evaluated on seven medical datasets and the results were compared with four well-known binary metaheuristic optimization algorithms: BPSO, bGWO, BDA, and BSSA. In addition, the convergence behavior of the B-MFO and comparative algorithms were assessed, and the results were statistically analyzed using the Friedman test. The experimental results demonstrate a superior performance of B-MFO in solving the feature selection problem for different medical datasets compared to other comparative algorithms

    MTV-MFO: Multi-Trial Vector-Based Moth-Flame Optimization Algorithm

    No full text
    The moth-flame optimization (MFO) algorithm is an effective nature-inspired algorithm based on the chemical effect of light on moths as an animal with bilateral symmetry. Although it is widely used to solve different optimization problems, its movement strategy affects the convergence and the balance between exploration and exploitation when dealing with complex problems. Since movement strategies significantly affect the performance of algorithms, the use of multi-search strategies can enhance their ability and effectiveness to solve different optimization problems. In this paper, we propose a multi-trial vector-based moth-flame optimization (MTV-MFO) algorithm. In the proposed algorithm, the MFO movement strategy is substituted by the multi-trial vector (MTV) approach to use a combination of different movement strategies, each of which is adjusted to accomplish a particular behavior. The proposed MTV-MFO algorithm uses three different search strategies to enhance the global search ability, maintain the balance between exploration and exploitation, and prevent the original MFO’s premature convergence during the optimization process. Furthermore, the MTV-MFO algorithm uses the knowledge of inferior moths preserved in two archives to prevent premature convergence and avoid local optima. The performance of the MTV-MFO algorithm was evaluated using 29 benchmark problems taken from the CEC 2018 competition on real parameter optimization. The gained results were compared with eight metaheuristic algorithms. The comparison of results shows that the MTV-MFO algorithm is able to provide competitive and superior results to the compared algorithms in terms of accuracy and convergence rate. Moreover, a statistical analysis of the MTV-MFO algorithm and other compared algorithms was conducted, and the effectiveness of our proposed algorithm was also demonstrated experimentally

    MTV-MFO: Multi-Trial Vector-Based Moth-Flame Optimization Algorithm

    No full text
    The moth-flame optimization (MFO) algorithm is an effective nature-inspired algorithm based on the chemical effect of light on moths as an animal with bilateral symmetry. Although it is widely used to solve different optimization problems, its movement strategy affects the convergence and the balance between exploration and exploitation when dealing with complex problems. Since movement strategies significantly affect the performance of algorithms, the use of multi-search strategies can enhance their ability and effectiveness to solve different optimization problems. In this paper, we propose a multi-trial vector-based moth-flame optimization (MTV-MFO) algorithm. In the proposed algorithm, the MFO movement strategy is substituted by the multi-trial vector (MTV) approach to use a combination of different movement strategies, each of which is adjusted to accomplish a particular behavior. The proposed MTV-MFO algorithm uses three different search strategies to enhance the global search ability, maintain the balance between exploration and exploitation, and prevent the original MFO’s premature convergence during the optimization process. Furthermore, the MTV-MFO algorithm uses the knowledge of inferior moths preserved in two archives to prevent premature convergence and avoid local optima. The performance of the MTV-MFO algorithm was evaluated using 29 benchmark problems taken from the CEC 2018 competition on real parameter optimization. The gained results were compared with eight metaheuristic algorithms. The comparison of results shows that the MTV-MFO algorithm is able to provide competitive and superior results to the compared algorithms in terms of accuracy and convergence rate. Moreover, a statistical analysis of the MTV-MFO algorithm and other compared algorithms was conducted, and the effectiveness of our proposed algorithm was also demonstrated experimentally

    Comparison of variables and objective values for the OPF using IEEE 30-bus system for Case1.

    No full text
    Comparison of variables and objective values for the OPF using IEEE 30-bus system for Case1.</p

    The obtained results for unimodal test functions.

    No full text
    The obtained results for unimodal test functions.</p

    The classification of single and multi-search strategies.

    No full text
    The classification of single and multi-search strategies.</p

    Comparison of MMKE and comparative algorithms in terms of the overall effectiveness (OE).

    No full text
    Comparison of MMKE and comparative algorithms in terms of the overall effectiveness (OE).</p
    corecore