10 research outputs found

    The results of U-Pb SHRIMP-II dating of zircon from granitoids of Talitsky molybdenum-bearing massif (eastern slope of the Middle Urals)

    Get PDF
    Age position and geodynamic conditions of molybdenum metallization and productive granitoids of the Urals formation are very little studied now. This publication contains the results of isotopic dating of granites from Talitsa Cu-Mo-porphyry deposit which should help solve this problem. The timing of formation of the molybdenum-bearing granitoids of Talitsa deposit was determined by applying the U-Pb SHRIMP-II method through zircons (the Center for Isotopic Research of All Russian Geological Research Institute, St.Petersburg). The U-Pb-age has been calculated on 7 (from a total of 11 conduc­ted) measurements with probability of concordanсе 0.996 and MSWD = 0.105 and it is 297.4 ± 2.3 Ma. The results of U-Pb dating are similar to before published Re-Os ages of Talitsa molybdenite deposit: 299.9 ± ± 2.9 Ma and 298.3 ± 1.3 Ma. These data establishes the new unknown before age level of molybdenum metallization. Until recently there has been only data on the Yuzhno-Shameiskoe molybdenum deposit connected with the subalkaline granites of Malyshevo massif which is younger: 277.1 ± 1.1 Ma. According to the received data, the intrusion of investigated granitoids happened practically at the same time as the formation of the wide-spread in the western slope of the Middle Urals intrusive bodies which are accompanied by gold metallization (Verkhisetsky, Shartashsky and others). With such close (practically the same) time of formation the rocks of molybdenum-bearing and gold-bearing massifs significantly differ in petrochemical peculiarities, which probably determines their metallogenetic specialization. Granitoids forming gold-bearing quartz veins on chemical composition are rocks of calc-alkaline series (typical exemple - Shartashskyi massif with Beriozovsk gold deposite). The granitoids productive on of Cu-Mo-porphyry type metallization together with large number of normal alkalinity rocks includes subalkaline rocks such as monzodiorites and quartz monzodiorites

    ВОЗРАСТНЫЕ РУБЕЖИ ПРОЯВЛЕНИЯ И ОСОБЕННОСТИ СОСТАВА РАННЕПАЛЕОЗОЙСКОГО МАГМАТИЗМА И СВЯЗАННЫХ С НИМ РЕДКОМЕТАЛЛЬНЫХ ПЕГМАТИТОВ В ЮГО-ВОСТОЧНОЙ ЧАСТИ САНГИЛЕНСКОГО БЛОКА ТУВИНО-МОНГОЛЬСКОГО МАССИВА

    Get PDF
    The article presents new data on ages (U-Pb zircon dating, SIMS SHRIMP-II) and chemical compositions of rocks from gabbro-granitic and granite-leucogranitic magmatic associations. These rocks preceded the formation of Li-enriched spodumene pegmatites of the Tserigiyngol-Burchin ore cluster (Russian: ЦБРУ), one of the main clusters in the South Sangilen pegmatite belt (SSB) located in the Tuva-Mongolian massif being a part of the Central Asian Fold Belt. We investigated the rocks from the Upper Tserigiyngol, Uchuglyk and Temenchulu plutons, and pegmatites from two neighbouring fields. We distinguish three impulses of granitic magmatism (517±7, 508±7, and 488±6 Ma), which are attributed to different stages of the Early Paleozoic collision orogeny (520-480 Ma). The period when the Li-enriched pegmatites were formed (494±7 Ma) is close to the magmatism impulse at 488±6 Ma. Differences are discovered in compositional and isotopic (Sm-Nd) features of granites dominating at the following stages of collisional orogeny: (1) early collision (517±7 Ma) – I-type granites, eNd(T)=0–1.5, TNd (DM-2st)=1.2–1.1 b.y., and (2) late collision (488±6 Ma) – A-2-type granites, eNd(T)=–3.0…–1.6, TNd (DM-2st)=1.5–1.4 b.y., which are due to different sources. Our study shows that facies transitions are absent between the late-collision granites (488±6 Ma) and the spodumene pegmatites from the Tserigiyngol-Burchin ore cluster (494±7 Ma), although these rocks are close in age. In terms of geochemical features, the spodumene pegmatites from the cluster are strongly different from both the late-collision granites and spodumene pegmatites from other SSB fields, including the large Tastyg lithium deposit. We have analysed the role of interactions between the crustal and mantle materials in the formation of granitoid sources in the Tserigiyngol-Burchin ore cluster, and described their evolution in time and the influence on the pegmatite rare-element specialization.Представлены новые данные о возрасте (U-Pb по циркону, SIMS SHRIMP-II) и вещественном составе пород из габбро-гранитоидной и гранит-лейкогранитовой магматических ассоциаций, предшествовавших образованию богатых литием сподуменовых пегматитов Церигийнгольско-Бурчинского рудно-магматического узла (ЦБРУ) – одного из ключевых в Южно-Сангиленском поясе (ЮСП) проявлений редкометалльных пегматитов Тувино-Монгольского микроконтинента, входящего в состав Центрально-Азиатского складчатого пояса. В ЦБРУ проведены исследования пород из трех массивов – Верхнецеригийнгольского, Учуглыкского и Теменчулу, а также пегматитов двух полей, расположенных рядом с ними. Результаты исследований позволили выделить в этом регионе три импульса гранитообразования (517±7, 508±7 и 488±6 млн лет), с последним из которых субсинхронно время формирования редкометалльных пегматитов (494±7 млн лет), и обосновать соответствие их возраста различным стадиям раннепалеозойского коллизионного орогенеза (520–480 млн лет). Установлено, что отличия состава и изотопных характеристик гранитоидов, доминировавших на разных стадиях орогенеза: (1) раннеколлизионной (517±7 млн лет) – гранитоиды I-типа, eNd(T)=0–1.5, TNd (DM-2st)=1.2–1.1 млрд лет и (2) позднеколлизионной (488±6 млн лет ) – граниты А-2-типа, eNd(T)=–3.0…–1.6, TNd (DM-2st)=1.5–1.4 млрд лет, обусловлены различием их источников. Несмотря на близкий возраст сподуменовых пегматитов ЦБРУ и гранитов позднеколлизионного импульса, между ними не выявлено фациальных переходов, а геохимические особенности пегматитов резко контрастируют не только с этими гранитами, но и со сподуменовыми пегматитами других полей ЮСП, включающих крупное месторождение лития Тастыг. На основании полученных результатов рассмотрена роль процессов корово-мантийного взаимодействия в формировании источников гранитоидов ЦБРУ, их эволюция во времени и степень влияния на особенности редкометалльной специализации пегматитов

    ПРИНЦИПЫ СОСТАВЛЕНИЯ ТЕКТОНИЧЕСКИХ КАРТ АЗИИ И АРКТИКИ МАСШТАБОВ 1:2 500 000–1:5 000 000

    Get PDF
    An overview of the history of tectonic mapping in Russia is presented, and the principles of tectonic mapping are briefly described. Here, out attention is focused on the Tectonic Map of North, Central and East Asia (scale 1:2500000, 2014) and the Tectonic Map of the Arctic (scale 1:5000000, 2019) prepared by international projects of Karpinsky Russian Geological Research Institute (VSEGEI). The projects included participants from geological service agencies, universities and the academies of sciences of 13 countries. We describe the mapping approaches, structural features, legends, graphical design, and information at the map margins. The experience gained with the projects of these two tectonic maps will be used to compile the International Tectonic Map of Asia, scale 1:5000000 (ITMA-5000) and the Tectonic Map of Russia, scale 1:2500000.Приведена история развития отечественного тектонического картографирования с краткой характеристикой принципов составления тектонических карт разных лет. Главное внимание уделено Тектонической карте Северной, Центральной и Восточной Азии масштаба 1:2500000 (2014 г.) и Тектонической карте Арктики масштаба 1:5000000 (2019 г.), подготовленным в рамках международных проектов с участием геологических служб, университетов и академий наук 13 стран мира во Всероссийском научно-исследовательском институте им. А.П. Карпинского (ВСЕГЕИ). Охарактеризованы подходы к составлению этих карт, структуры и содержания легенд. Даны описания изобразительных средств и зарамочного оформления. Опыт, полученный при составлении тектонических карт Азии и Арктики, планируется применить при составлении Международной тектонической карты Азии масштаба 1:5000000 (ITMA-5000) и Тектонической карты России масштаба 1:2500000

    ГЛУБИННОЕ СТРОЕНИЕ ЗЕМНОЙ КОРЫ СЕВЕРО-ВОСТОЧНОЙ ЕВРАЗИИ И ЕЕ КОНТИНЕНТАЛЬНЫХ ОКРАИН

    Get PDF
    The paper reports on the deep geophysical studies performed by the Geological Survey of Russia (VSEGEI) under the international project – Deep Processes and Metallogeny of Northern, Central and Eastern Asia. A model of the deep crustal structure is represented by a set of crustal thickness maps and a 5400-km long geotransect across the major tectonic areas of Northeastern Eurasia. An area of 50000000 km2 is digitally mapped in the uniform projection. The maps show the Moho depths, thicknesses of the main crustal units (i.e. the sedimentary cover and the consolidated crust), anomalous gravity and magnetic fields (in a schematic zoning map of the study area), and types of the crust. The geotransect gives the vertical section of the crust and upper mantle at the passive margin of the Eurasian continent (including submarine uplifts and shelf areas of the Arctic Ocean) and the active eastern continental margin, as well as an area of the Pacific plate.В работе представлены результаты обобщения и интерпретации глубинных геофизических исследований, выполненных Геологической службой России (ВСЕГЕИ) в рамках международного проекта «Глубинные процессы и металлогения Северной, Центральной и Восточной Азии». Модель глубинного строения земной коры представлена комплектом карт, отражающих мощностные параметры земной коры, и геотрансектом протяженностью 5400 км, пересекающим основные тектонические области Северо-Восточной Евразии. Комплект цифровых карт, охватывающих область в 50 млн км2, создан в единой проекции и включает карты глубины залегания поверхности Мохоровичича, мощности основных подразделений земной коры (осадочный чехол и консолидированная земная кора), аномального поля силы тяжести и аномального магнитного поля, использованных для районирования территории, а также карту типов земной коры. Геотрансект пересекает северо-восточную часть Евразии и характеризует вертикальный срез земной коры и верхней мантии пассивной окраины Евразийского континента (включая глубоководные поднятия Северного Ледовитого океана и его шельфовую часть), активную восточную континентальную окраину и выходит в область Тихоокеанской плиты

    AGE AND COMPOSITION OF THE EARLY PALEOZOIC MAGMATIC ASSOCIATIONS AND RELATED RARE-ELEMENT PEGMATITES IN THE SOUTH-EASTERN PART OF THE SANGILEN BLOCK, TUVA-MONGOLIAN MASSIF

    Get PDF
    The article presents new data on ages (U-Pb zircon dating, SIMS SHRIMP-II) and chemical compositions of rocks from gabbro-granitic and granite-leucogranitic magmatic associations. These rocks preceded the formation of Li-enriched spodumene pegmatites of the Tserigiyngol-Burchin ore cluster (Russian: ЦБРУ), one of the main clusters in the South Sangilen pegmatite belt (SSB) located in the Tuva-Mongolian massif being a part of the Central Asian Fold Belt. We investigated the rocks from the Upper Tserigiyngol, Uchuglyk and Temenchulu plutons, and pegmatites from two neighbouring fields. We distinguish three impulses of granitic magmatism (517±7, 508±7, and 488±6 Ma), which are attributed to different stages of the Early Paleozoic collision orogeny (520-480 Ma). The period when the Li-enriched pegmatites were formed (494±7 Ma) is close to the magmatism impulse at 488±6 Ma. Differences are discovered in compositional and isotopic (Sm-Nd) features of granites dominating at the following stages of collisional orogeny: (1) early collision (517±7 Ma) – I-type granites, eNd(T)=0–1.5, TNd (DM-2st)=1.2–1.1 b.y., and (2) late collision (488±6 Ma) – A-2-type granites, eNd(T)=–3.0…–1.6, TNd (DM-2st)=1.5–1.4 b.y., which are due to different sources. Our study shows that facies transitions are absent between the late-collision granites (488±6 Ma) and the spodumene pegmatites from the Tserigiyngol-Burchin ore cluster (494±7 Ma), although these rocks are close in age. In terms of geochemical features, the spodumene pegmatites from the cluster are strongly different from both the late-collision granites and spodumene pegmatites from other SSB fields, including the large Tastyg lithium deposit. We have analysed the role of interactions between the crustal and mantle materials in the formation of granitoid sources in the Tserigiyngol-Burchin ore cluster, and described their evolution in time and the influence on the pegmatite rare-element specialization

    PRINCIPLES OF TECTONIC MAPPING OF ASIA AND THE ARCTIC, SCALES 1:2500000 – 1:5000000

    Get PDF
    An overview of the history of tectonic mapping in Russia is presented, and the principles of tectonic mapping are briefly described. Here, out attention is focused on the Tectonic Map of North, Central and East Asia (scale 1:2500000, 2014) and the Tectonic Map of the Arctic (scale 1:5000000, 2019) prepared by international projects of Karpinsky Russian Geological Research Institute (VSEGEI). The projects included participants from geological service agencies, universities and the academies of sciences of 13 countries. We describe the mapping approaches, structural features, legends, graphical design, and information at the map margins. The experience gained with the projects of these two tectonic maps will be used to compile the International Tectonic Map of Asia, scale 1:5000000 (ITMA-5000) and the Tectonic Map of Russia, scale 1:2500000

    DEEP CRUSTAL STRUCTURE IN NORTHEASTERN EURASIA AND ITS CONTINENTAL MARGINS

    Get PDF
    The paper reports on the deep geophysical studies performed by the Geological Survey of Russia (VSEGEI) under the international project – Deep Processes and Metallogeny of Northern, Central and Eastern Asia. A model of the deep crustal structure is represented by a set of crustal thickness maps and a 5400-km long geotransect across the major tectonic areas of Northeastern Eurasia. An area of 50000000 km2 is digitally mapped in the uniform projection. The maps show the Moho depths, thicknesses of the main crustal units (i.e. the sedimentary cover and the consolidated crust), anomalous gravity and magnetic fields (in a schematic zoning map of the study area), and types of the crust. The geotransect gives the vertical section of the crust and upper mantle at the passive margin of the Eurasian continent (including submarine uplifts and shelf areas of the Arctic Ocean) and the active eastern continental margin, as well as an area of the Pacific plate
    corecore