1,736 research outputs found

    Antidepressants and Morphological Plasticity of Monoamine Neurons

    Get PDF

    Long-term survival after an aggressive surgical resection and chemotherapy for stage IV pulmonary giant cell carcinoma

    Get PDF
    BACKGROUND: Pulmonary giant cell carcinoma is one of the rare histological subtypes with pleomorphic, sarcomatoid or sarcomatous elements. The prognosis of patients with this tumor tends to be poor, because surgery, irradiation and chemotherapy are not usually effective. CASE PRESENTATION: We herein report a patient with pulmonary giant cell carcinoma with stage IV disease in whom aggressive multi-modality therapy resulted in a long-term survival. A 51-year-old male underwent an emergent operation with a partial resection of small intestinal metastases due to bleeding from the tumor. The patient also underwent a left pneumonectomy due to hemothorax as a result of the rapid growth of the primary tumor. Thereafter, two different regimens of chemotherapy and a partial resection for other site of small intestinal metastases and a splenectomy for splenic metastases were performed. The patient is presently doing well without any evidence of recurrence for 3 years after the initial operation. CONCLUSION: This is a first report of a rare case with stage IV pulmonary giant cell carcinoma who has survived long-term after undergoing aggressive surgical treatment and chemotherapy

    Perspective Chapter: Depression as a Disorder of Monoamine Axon Degeneration May Hold an Answer to Two Antidepressant Questions - Delayed Clinical Efficacy and Treatment-Resistant Depression

    Get PDF
    It has long been known that the pathophysiology of depression is associated with a reduction in the brain concentrations of monoamines, that is, serotonin, noradrenaline, and dopamine. Although conventional antidepressant drugs increase monoamine contents immediately after their administration, it takes several weeks or more before their clinical efficacy becomes evident. The mechanism of the delayed onset of antidepressant effects remains elusive. Furthermore, over 30–50% of patients with depression show resistance to antidepressant drug treatment. Thus, two major questions remain to be resolved—(1) delayed clinical efficacy of antidepressant drugs, and (2) a large percentage of treatment-resistant depression. First, this review describes the evidence, obtained from animal and human studies, that similar to early-stage Parkinson’s disease, depression is a neurodegenerative disease characterized by the degeneration of monoamine axons and the delayed clinical efficacy of antidepressants is due to their regenerative action on damaged monoamine axons. Moreover, the causes of treatment-resistant depression are discussed in relation to inflammation as a cause of neurodegeneration. This review provides new insights into not only the pathophysiology of depression but also the diagnosis and therapy of early stages of neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease

    Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time

    Get PDF
    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1¿/¿ cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time

    Cytoskeletal inhibitors, anti-adhesion molecule antibodies, and lectins inhibit hepatocyte spheroid formation.

    Get PDF
    We investigated the role of cytoskeletons, adhesion molecules, membrane-glycosylations, and proteoglycans in forming the shape of adult rat hepatocyte spheroids. Isolated hepatocytes were cultured on dishes coated with chondroitin sulfate phosphatidyl ethanolamine (CS-PE). Spheroid-forming ability was observed after adding cytoskeletal inhibitors (cytochalasin D, colchicine, okadaic acid, mycalolide B), anti-adhesion molecule antibodies (anti-E-cadherin, anti-connexin 32, anti-zo-1), a glycosphingolipid synthetic inhibitor (N-butyldeoxynojirimycin), a proteoglycan synthetic inhibitor (p-nitrophenyl-beta-D-xylopyranoside), and several lectins. Localization of actin was studied using confocal microscopy after rhodamine-phalloidin staining. Adding cytoskeletal inhibitors on the initial day resulted in weakly clustered cell aggregates rather than smoothly formed spheroids. These effects disappeared at lower reagent concentrations. When reagents were added on day 3, after the formation of spheroids, only mycalolide B was associated with an irregular spheroid surface; the others had no effect. Adding the anti-E-cadherin, anti-connexin 32 on the initial day showed inhibition of spheroid formation, but anti-zo-1 and proteoglycan synthetic inhibitor had no effects. Among the several lectins, only Wheat Germ Agglutinin (WGA), Ricinus communis Agglutinin I (RCA-I), and Concanavalin A (ConA) showed inhibition. These results suggest that cytoskeletal conformation and some adhesion molecules are necessary to form spheroids. Based on the interactions between lectins and hepatocytes in the present study, hepatocytes appear to contain an N-linked complex or N-linked hybrid glycosylated chains
    corecore