

Journal of Nuclear Science and Technology

ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20

Thermal-Neutron Capture Cross Section and **Resonance Integral of Americium-241**

Shoji NAKAMURA , Masayuki OHTA , Hideo HARADA , Toshiyuki FUJII & Hajimu YAMANA

To cite this article: Shoji NAKAMURA , Masayuki OHTA , Hideo HARADA , Toshiyuki FUJII & Hajimu YAMANA (2007) Thermal-Neutron Capture Cross Section and Resonance Integral of Americium-241, Journal of Nuclear Science and Technology, 44:12, 1500-1508, DOI: 10.1080/18811248.2007.9711399

To link to this article: https://doi.org/10.1080/18811248.2007.9711399

Published online: 05 Jan 2012.

🖉 Submit your article to this journal 🗗

Article views: 678

View related articles \square

Citing articles: 3 View citing articles 🗹

ARTICLE

Thermal-Neutron Capture Cross Section and Resonance Integral of Americium-241

Shoji NAKAMURA^{1,*}, Masayuki OHTA^{1,†}, Hideo HARADA¹, Toshiyuki FUJII² and Hajimu YAMANA²

¹Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195

²Research Reactor Institute, Kyoto University, 2-1010 Asashiro Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494

(Received May 28, 2007 and accepted in revised form August 31, 2007)

The thermal-neutron capture cross section $(\sigma_{0,g})$ and the resonance integral $(I_{0,g})$ leading to the ground state of ²⁴²Am were measured by an activation method for neutron capture by ²⁴¹Am. A method with gadolinium, which was similar to the cadmium difference method, was used to measure the cross section $\sigma_{0,g}$ with attention to resonances of ²⁴¹Am. Americium chloride samples containing ²⁴¹Am radioisotope were irradiated for 68 h in the long-irradiation plug of the Kyoto University Research Reactor, KUR. Wires of Co/Al and Au/Al alloys were used as monitors to determine thermal-neutron fluxes and epithermal Westcott's indexes at the irradiation positions. An α -ray spectrometer was used to measure the activity ratios of ²⁴²Cm to ²⁴¹Am. On the basis of Westcott's convention, the $\sigma_{0,g}$ and $I_{0,g}$ values were determined as 628 \pm 22 b and 3.5 \pm 0.3 kb, respectively.

KEYWORDS: americium-241, americium-242g, curium-242, activation method, thermal-neutron capture cross section, resonance integral, alpha-ray spectroscopy

I. Introduction

Associated with the social acceptability of nuclear power reactors, it would be desirable to solve the problems of the nuclear waste management of minor actinides (MAs) existing in spent nuclear fuels. The MAs (237Np, 241Am, ²⁴³Am, etc.) are of importance in nuclear waste management, because the presence of these nuclides induces longterm radiotoxicity on account of their extremely long halflives. Figure 1 illustrates a partial section of the nuclear chart displaying relevant reactions and decays. The ²⁴¹Am nuclide has kept its radioactivity because of its long half-life (432.2 y¹), and also generates heavier actinides such as ²⁴²Cm, ²⁴³Cm and ²⁴⁴Cm by further neutron captures. Since ²⁴²Cm has a relatively short half-life (162.8 d¹), the ²⁴²Cm contained in the spent nuclear fuels causes shielding and decay-heat problems. Consequently, one of the most important isotopes in MAs seems to be ²⁴¹Am.

A method of transmutation seems to be one of the solutions to reduce the radiotoxicity of nuclear wastes.²⁾ The transmutation for several MAs makes it possible to reduce both the size of a repository for packages of nuclear wastes and the storage risks for a long term. In the study of the transmutation or burn-out of ²⁴¹Am by reactor neutrons, accurate data of neutron capture cross sections are necessary to evaluate the reaction rates. The accurate data with 5% error

[†]Present address: Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

Fig. 1 Partial section of the nuclear chart displaying relevant reactions and decays

on the capture cross section of ²⁴¹Am have been required as registered in the World Request List for Nuclear Data: WRENDA 91/92.³⁾ However, there are discrepancies among reported data for the thermal-neutron capture cross section $(\sigma_{0,g})$ and the resonance integral $(I_{0,g})$ of the ²⁴¹Am $(n, \gamma)^{242g}$ Am reaction. Measured data⁴⁻¹⁴⁾ are listed in **Table 1**. Conflicting data have been reported by many measurements for the neutron capture cross section of ²⁴¹Am. One finds that discrepancies between the data reported recently reach 20– 30%. It seems that these discrepancies in the thermal-neutron capture cross sections may be caused by taking a cutoff energy of 0.5 eV in measurements. **Figure 2** plots the neutron cross-section curve of ²⁴¹Am.¹⁵⁾ Since ²⁴¹Am has huge resonances at neutron energies of 0.308 and 0.573 eV, the cutoff energy of 0.5 eV cannot filter the first resonance.

^{*}Corresponding author, E-mail: nakamura.shoji@jaea.go.jp

[©]Atomic Energy Society of Japan

References	Year	$\sigma_{0,g}$ (barn)	I _{0,g} (barn)	Cutoff energy (eV)
Seaborg <i>et al.</i> ⁴⁾	1946	560 ± 84		
Hanna <i>et al.</i> ⁵⁾	1951	568 ± 56.8		
Street et al. ⁶⁾	1952	300		
Pomerance ⁷⁾	1955	$625\pm35^*$		
Deal <i>et al.</i> ⁸⁾	1964	770	900	0.5
Bak et $al.^{9)}$	1967	670 ± 60	2100 ± 200	0.4
Harbour <i>et al.</i> ¹⁰⁾	1973	748 ± 20	1330 ± 117	0.369
Gavrilov et al. ¹¹⁾	1976	780 ± 50	1570 ± 10	0.5
Shinohara <i>et al.</i> ¹²⁾	1997	768 ± 58	1694 ± 146	0.5
Fioni et al. ¹³⁾	2001	636 ± 46		
Maidana et al. ¹⁴⁾	2001	602 ± 9	1665 ± 91	0.5

 Table 1
 Measured data for the ²⁴¹Am cross section leading to ^{242g}Am

The asterisk(*) denotes the cross sections of the ${}^{241}Am(n_{th},\gamma) {}^{242m+g}Am$ reaction.

Fig. 2 The cross-section curve of ²⁴¹Am evaluated by JENDL-3.3.

Americium-241 has strong resonances at 0.308 and 0.573 eV, which are at least partially covering the 0.5 eV cutoff energy.

Therefore, contributions to the reaction rate by the first resonance would result in overestimation for the thermal-neutron capture cross section of ²⁴¹Am. In view of the behavior of the cross-section curve in Fig. 2, the cutoff energy of 0.1 eV could get rid of the influence of resonances. Thus, the aim of this work was to confirm that there would be problems in how to set the cutoff energy, and also to measure the thermal-neutron capture cross section $\sigma_{0,g}$ and the resonance integral $I_{0,g}$ of the ²⁴¹Am $(n, \gamma)^{242g}$ Am reaction.

II. Experiments

1. Sample Preparation and Neutron Irradiation

Figure 3 schematically gives an outline of sample compositions. An ²⁴¹Am standardized solution (Amersham International plc., 0.5 mol/L(M) HCl) was prepared as Am samples. The Am solution contained ²⁴³Am of 0.064% as one of the impurities, but its amount was very small. The energy of the α -ray from ²⁴³Am is 5.3 MeV, and does not interfere with the 5.49-MeV α -ray from ²⁴¹Am. Even if ²⁴⁴Cm would be generated by the neutron capture of ²⁴³Am, the 5.8-MeV

Fig. 3 Outline figures of irradiation samples

 α -ray from ²⁴⁴Cm also does not interfere with the 6.11-MeV α -ray from ²⁴²Cm. The estimated activity of other alpha-particle emitters was negligibly 0.0002%.

Two ²⁴¹Am standardized solutions equivalent to 100 Bq ($2.5 \,\mu$ l) and 500 Bq ($12.5 \,\mu$ l) were dropped into the bottom of high-purity quartz tubes (8 mm in inner diameter, 100 mm in length) using a glass capillary without touching the inside of the tube. After drying the solutions, quartz tubes were flame-sealed under evacuation. When sealing, the bottom of the quartz tube was covered with a thick copper jacket working as a heat sink to prevent the Am sample from evaporating. The sealed tube was about 20 or 50 mm in length, and its outside was washed by 0.7 M HNO₃ and ethanol before irradiations. By measurements of the 59-keV γ ray from ²⁴¹Am, it was confirmed that Am samples were surely enclosed in quartz tubes.

Wires of Co/Al alloy (Co: 0.46 ± 0.1 wt%, 0.381 mm in diameter) and Au/Al alloy (Au: 0.112 ± 0.01 wt%, 0.510 mm in diameter) were used to monitor neutron fluxes at the irradiation position. Since ⁵⁹Co and ¹⁹⁷Au have different sensitivities to thermal and epithermal neutrons, those wires are appropriate for determining the thermal and epithermal

 Table 2
 Nuclear data used for the neutron-flux monitors^{1,18,19}

											Detect	ed γ-rays
Material	Amounts ^{a)} (mg)	Irradiation time	Irradiation type	Half-life ^{a)}	σ_0^{a} (barn)	$I_0^{a)}$ (barn)	g	<i>s</i> ₀ ^{a)}	G_{th}	G_{epi}	Energy (keV)	Ιγ ^{b)} (%)
Co/Al alloy Co:0.46 wt% 0.381 mm\$\$\$\$\$	#1 0.3863 ₂ #2 0.5991 ₂	10 h 10 h	without the Gd with the Gd	5.2714 ₅ y	37.18 ₆	75.9 ₂₀	1.0004	1.738 ₆₁	1.00	1.00	1173 1332	99.9736 ₇ 99.9856 ₄
Au/Al alloy Au:0.112 wt% 0.510 mmø	#1 0.3346 ₂ #2 0.6599 ₂	10 h 10 h	without the Gd with the Gd	2.69517 ₂₁ d	98.65 9	1550 ₂₈	1.0054	17.22 32	1.00	0.99	412	95.58 ₁₂

^{a)}In our notation, 0.3863 $_2$ is 0.3863 \pm 0.0002, 5.2714 $_5$ is 5.2714 \pm 0.0005, 75.9 $_{20}$ is 75.9 \pm 2.0, etc.

^{b)}Gamma-ray emission probability per decay. In our notation, 99.9736_7 is 99.9736 ± 0.0007 , etc.

fractions in the neutron flux.^{16,17)} The amount of Co or Au contained in each wire was determined by weight measurement with a microbalance. Nuclear data^{1,18,19)} for monitor wires are listed in **Table 2**. A set of Co and Au monitor wires were wrapped with a high-purity aluminum foil, and attached to the sealed tube. When samples were housed in two-fold–aluminum-enclosure rods, samples were wrapped with aluminum foils in the shape of a string as shown in Fig. 3 so as not to slip off from irradiation positions. The enclosure rod was sealed by electric welding.

In this work, attention was paid to huge resonances of $^{241}\mathrm{Am}$ at 0.573 and 0.308 eV as shown in Fig. 2. If the cutoff energy is set as 0.1 eV, it could avoid those resonances. Hence, a gadolinium (Gd) foil was used as a filter. Since Gd has a large capture cross section of 10000b, it would be effective for filtering thermal neutrons. An aluminum capsule, 10 mm in diameter and 30 mm in length, was prepared to put the Am-sealed tube in it. A Gd foil was coated on the outside surface of the aluminum capsule. The thickness of the Gd foil was optimized in the neutron transmission. Results of transmission in changing the thickness of Gd foils are plotted in Fig. 4. When the Gd foil with a 25 µm thickness is used, the effective thickness is estimated as 35 µm in consideration of the geometric shape of the capsule. The energy at which transmission is reduced by half can be estimated as 0.107 eV as seen from Fig. 4. Hence, the Gd foil with a 25 µm thickness was chosen, and the cutoff energy was set as 0.107 eV in this experiment. As shown at the bottom of Fig. 3, the Am sample and monitors were housed in the Gd-coated capsule, and the capsule was further loaded into another aluminum enclosure rod.

The irradiations with and without the Gd-coated capsule were performed for 68 h in the long-irradiation (LI) plug of the KUR, of which the nominal value of the thermal-neutron flux was 4.7×10^{13} n/cm²s when operating at 5 MW. The rod loading Gd-shielded samples was arranged at a lower position in the LI plug, and the other rod was arranged at an upper position. Thus, the samples with and without the Gd-coated capsule were kept away at about 40 cm in the vertical direction so as not to interfere with each other. For irradiations, it is important to avoid the population of ²⁴²Cm caused by ^{242m}Am, *i.e.*, there is an optimal irradiation time. Under the present conditions, the induced activity of ^{242m}Am and its contribution to ²⁴²Cm were negligible both because

Fig. 4 Transmission of neutrons through the Gd foils with various thicknesses.

The solid line plots the transmission through the Gd foil with a 35 μ m thickness, the broken line a 25 μ m thickness, and the dotted line a 50 μ m thickness.

²⁴¹Am has a small cross section to produce ^{242m}Am in comparison with that of ^{242g}Am and because ^{242m}Am has a relatively long half-life of 141 y.¹⁾ Thus, ²⁴²Cm was accumulated only via the ²⁴¹Am(n, γ)^{242g}Am reaction. After allowing ^{242g}Am (16.02 h¹⁾) to decay for 18 d, the α-ray activity of ²⁴²Cm was measured relative to the ²⁴¹Am sample activity as described in the next section.

2. Activity Measurement

Two irradiated Am samples with and without the Gd-coated capsule were dissolved by adding $30 \,\mu$ l of $3 \,M$ HNO₃ solution. About $10 \,\mu$ l was extracted from each solvent solution, and was dropped onto the center of a Petori laboratory dish ($30 \,\text{mm}\phi$ in diameter, $10 \,\text{mm}$ in height). After dryness, measurement samples were prepared. To check the reproducibility of measurements, three measurement samples were made from each irradiated Am sample. Alpha rays emitted from ²⁴¹Am (5.5 MeV) and ²⁴²Cm (6.1 MeV) were measured with a silicon surface-barrier alpha-spectrometer (SEIKO EG&G ORTEC SOLOIST Alpha Spectrometer). Measurements were performed for 1–2 h until more than 10 k counts were obtained for a peak area originating from ²⁴²Cm.

Fig. 5 Examples of α -ray spectra of irradiated Am samples. a) The upper side shows the spectrum of the bare ²⁴¹Am sample; b) the lower side shows the spectrum of the ²⁴¹Am sample irradiated with the Gd-coated capsule.

Figure 5 shows typical α -ray spectra obtained from the Am samples in the irradiations with and without the Gd-coated capsule. The measured system resolution for the α -ray peaks of ²⁴¹Am and ²⁴²Cm was 45 keV.

The γ rays from irradiated monitor wires were measured by a high-purity Ge detector, the performance of which was characterized by a relative efficiency of 25% to a 7.6 cm \times 7.6 cm ϕ NaI (Tl) detector and an energy resolution of 1.9 keV full width at half-maximum (FWHM) at the 1.33 MeV peak of ⁶⁰Co. The peak detection efficiencies were determined with a set of calibrated mixed sources: ¹¹³Sn, ¹³⁷Cs, ⁸⁸Y and ⁶⁰Co. The error of the detection efficiency due to the uncertainties of the calibration γ source intensities was estimated as 2%. The radioactivities of Au and Co monitor wires were measured at a distance of 200 mm from the center of the detector head.

III. Analysis

1. Outline of Westcott's Convention

The effective cross section $\hat{\sigma}$ is defined by equating the reaction rate *R* to the product of $\hat{\sigma}$ and nv_0 , where $nv_0^{16,17)}$ is the "neutron flux" in Westcott's convention²⁰⁾ with the neutron density *n*, including thermal and epithermal neutrons, and with the velocity of neutrons $v_0 = 2,200 \text{ m/s}$, so that

$$R = n\upsilon_0 \hat{\sigma}.$$
 (1)

When the cross section departs from the 1/v law, a simple relation for $\hat{\sigma}$ can be obtained as:

$$\hat{\sigma} = \sigma_0 (gG_{th} + r(T/T_0)^{1/2} s_0 G_{epi}), \qquad (2)$$

where σ_0 is the thermal-neutron capture cross section; g is a function of the temperature related to the departure of the cross section from the 1/v law; r is an epithermal index in Westcott's convention; T is the neutron temperature and T_0 is 293.6 K; the quantity $r(T/T_0)^{1/2}$ gives the fraction of epithermal neutrons in the neutron spectrum; the G_{th} and G_{epi} denote self-shielding coefficients for thermal and epithermal neutrons, and are taken as unity in this analysis under the present sample conditions. The value of g for ²⁴¹Am was taken as 1.051.¹⁸⁾ The parameter s_0 is defined as:

$$s_0 = \frac{2I'_0}{\sqrt{\pi}\sigma_0},$$
 (3)

where I_0' is the reduced resonance integral, *i.e.*, the resonance integral with the 1/v component subtracted.

2. Flux and Cross-Section Determination with Simplified Equations

Substituting Eq. (3) into Eq. (1), reaction rates can be written in simplified forms as:

$$R/\sigma_0 = gG_{th}\phi_1 + G_{epi}\phi_2 s_0, \tag{4}$$

for irradiation without the Gd-coated capsule, and

$$R'/\sigma_0 = gG_{th}\phi_1' + G_{epi}\phi_2's_0, \tag{5}$$

for irradiation with the Gd-coated capsule. Here, the ϕ_1 and ϕ_1' are neutron fluxes in the low (thermal) energy region. The ϕ_2 and ϕ_2' are those in the epithermal energy region. The prime (') refers to irradiation with the Gd-coated capsule. The values of ϕ_1 , ϕ_2 , ϕ_1' and ϕ_2' at the irradiation position were obtained by using s_0 and σ_0 in Table 2 and reaction rates R and R' for the monitor wires. The reaction rates were calculated from peak counts of γ rays from ⁶⁰Co and ¹⁹⁸Au. **Figure 6** shows the experimental relation between R/σ_0 (or R'/σ_0) and s_0 obtained by the flux monitor wires. The neutron fluxes ϕ_1 and ${\phi_1}'$ are obtained with the relation in Fig. 6; the slope of each solid line gives the epithermal flux, *i.e.*, ϕ_2 or ϕ_2' . The irradiation positions of two targets were kept away at about 40 cm from the core center in the vertical direction at the KUR so as not to interfere with each other. The results of the neutron fluxes are tabulated in Table 3. The thermal-neutron flux at the irradiation position was $(3.03 \pm 0.11) \times 10^{13} \text{ n/cm}^2/\text{s}$, and its error was mainly based on the errors of the detection efficiency and the cross sections used in this analysis.

From Eqs. (4) and (5), the parameter s_0 is rewritten as follows:

$$s_0 = -\frac{gG_{th}\phi_1 - gG_{th}\phi_1'(R/R')}{\phi_2 G_{epi} - \phi_2' G_{epi}(R/R')},$$
(6)

and s_0 is obtained from the ratio of *R* to *R'* for irradiated targets and the neutron fluxes ϕ_1 , ϕ_2 , ϕ_1' and ϕ_2' , which are

 $\times 10^{13}$ (n/cm²·s)

Table 3 Reaction rates for monitors and neutron flux in long-irradiation plug at KUR

	R/σ_0 (without the Gd)	R'/σ_0 (with the Gd)	Thermal neutron flux ϕ_1 or ϕ_1'	Epithermal neutron flux ϕ_2 or ϕ'_2
⁶⁰ Co ¹⁹⁸ Au	3.19 ± 0.10 4.58 ± 0.10	$\begin{array}{c} 0.515 \pm 0.016 \\ 2.18 \pm 0.05 \end{array}$	$\phi_1 = 3.03 \pm 0.11$ $\phi_1' = 0.391 \pm 0.019$	$\phi_2 = 0.090 \pm 0.009 \ \phi_2' = 0.108 \pm 0.004$

Fig. 6 Experimental relations between R/σ_0 and s₀ obtained by analysis of the induced activities of flux monitors

tabulated in Table 3. The σ_0 is obtained by substituting s_0 into Eq. (4). The I_0' is then obtained using Eq. (3).

The resonance integral I_0 is expressed by the following equation:

$$I_0 = I(1/\upsilon) + I'_0, \tag{7}$$

where the term I(1/v) in Eq. (7) is the 1/v contribution to the resonance integral above the cutoff energy (E_c) and derived as:

$$I(1/\upsilon) = \int_{E_C}^{\infty} g\sigma_0 \sqrt{\frac{E_0}{E}} \frac{dE}{E} = 2g\sigma_0 \sqrt{\frac{E_0}{E_C}},\tag{8}$$

where E_0 is the thermal neutron energy (0.0253 eV). For $E_c = 0.107 \,\mathrm{eV}$, the $1/\upsilon$ contribution to the resonance integral is estimated to be $I(1/\nu) = 1.022\sigma_0$ from Eq. (8). Then, the resonance integral I_0 is given as:

$$I_0 = I'_0 + 1.022\sigma_0. \tag{9}$$

3. Analysis of Reaction Rate for ${}^{241}\text{Am}(n_{\text{th}},\gamma)^{242\text{g}}\text{Am}$ Reaction

Figure 7(a) shows the neutron capture reactions and decay chains related to ²⁴¹Am during neutron irradiation. The symbols in Fig. 7(a) denote the following: the subscripts 0, 1, 2, 3 and 4 denote ²⁴¹Am, ^{242m}Am, ^{242g}Am, ²⁴²Cm and ²⁴³Am nuclei, respectively; N is the number of nuclei; λ is the decay constant; σ_m and σ_g are the neutron capture cross sections leading to ^{242m}Am and ^{242g}Am, respectively; σ_1 , σ_2 ,

Fig. 7 (a) Neutron capture and decay process of ²⁴¹Am and products in neutron irradiation (b) Decay scheme of product nuclei after irradiation

 σ_3 and σ_4 are the capture σ_{γ} and fission cross sections σ_f for ^{242m}Am, ^{242g}Am, ²⁴²Cm and ²⁴³Am, respectively. Nuclear data used in this analysis are listed in Table 4.

The amount N_1 of ^{242m}Am is given by

$$N_{1} = \frac{N_{0}\sigma_{m}\phi}{\Lambda_{1} - \Lambda_{0}} (\exp(-\Lambda_{0}t_{irr}) - \exp(-\Lambda_{1}t_{irr})), \quad (10)$$

$$\Lambda_{0} \equiv \lambda_{0} + (\sigma_{m} + \sigma_{g})\phi, \text{ and } \Lambda_{1} \equiv \lambda_{1} + \sigma_{1}\phi,$$

JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY

Nuclide	Half-life	Deca	ay (branch:%)	Cross sections (b) Capture σ_{γ} , fission $\sigma_{\rm f}$	Resonance integral (b) Capture I_{γ} , fission $I_{\rm f}$
²⁴¹ Am	$432.2\pm0.7\mathrm{y}$	α (100)	5486 keV (84.5) 5443 keV (13.0)	$\sigma_{\gamma} = 54 \pm 5 \text{ (to } 242 \text{ m)}$ $\sigma_{\gamma} = 533 \pm 13 \text{ (to } 242 \text{ g)}$ $\sigma_{\tau} = 3.20 \pm 0.09$	$I_{\gamma} = 195 \pm 20 \text{ (to } 242 \text{ m)}$ $I_{\gamma} = 1230 \pm 100 \text{ (to } 242 \text{ g)}$ $I_{f} = 14.4 \pm 1.0$
^{242m} Am	141 ± 2 y	IT: 99.54	1 ± 0.012	$\sigma_{\gamma} = 2000 \pm 600$ $\sigma_{f} = 6950 \pm 280$	$I_{\rm f} = 1800 \pm 65$
^{242g} Am	$16.02\pm0.02\mathrm{h}$	$\beta^{-}: 82.7:$	± 0.3	$\sigma_{\gamma} = 2100 \pm 200$	
²⁴² Cm	$162.8\pm0.2\mathrm{d}$	α (100)	6113 keV (74.0) 6069 keV (25.0)	$\sigma'_{\gamma} = 16 \pm 5$ $\sigma_{\rm f} < 5$	$I_{\gamma} = 110 \pm 20$
²⁴³ Am	$7370\pm40\mathrm{y}$	α (100)	5275 keV (87.4) 5233 keV (11.0)	$\sigma_{\gamma} = 75.1 \pm 1.8$	$I_{\gamma} = 1820 \pm 70$
²³⁸ Pu	$87.7\pm0.3\mathrm{y}$	α (100)	5499 keV (70.91) 5456 keV (28.98) , <i>etc</i> .		

 Table 4
 Nuclear data used for the cross-section determination^{1,18,19)}

where ϕ is the neutron flux; t_{irr} is the neutron irradiation time.

In consideration of the loss of 241 Am sample amount during irradiation, the amount N_2 of 242g Am can be written in the form:

$$\frac{dN_2}{dt} = N_0 \sigma_g \phi + IT \cdot \lambda_1 N_1 - \lambda_2 N_2 - N_2 \sigma_2 \phi$$

$$\approx N_0 \sigma_g \phi - \Lambda_2 N_2 = N_0 \sigma_g \phi \cdot \exp(-\Lambda_0 t) - \Lambda_2 N_2, \quad (11)$$

where *IT* is the isomer transition probability $(99.541\%^{1})$ from ^{242m}Am to ^{242g}Am. Although 100 Bq of the ²⁴¹Am sample would be irradiated for a week, the induced activity of ^{242m}Am could be estimated as only 0.3 Bq because of its long half-life (141 y^{1}) . Thus, the contribution of the isomer transition from ^{242m}Am to ^{242g}Am is negligible under the present irradiation conditions.

One can derive its solution:

....

 $\Lambda_2 \equiv \lambda_2 + \sigma_2 \phi,$

$$N_2(t) = \frac{N_0 \sigma_g \phi}{\Lambda_2 - \Lambda_0} (\exp(-\Lambda_0 t) - \exp(-\Lambda_2 t)).$$
(12)

Consequently, the amount N_3 of ²⁴²Cm is given by

$$\frac{dN_3}{dt} = \beta \cdot \lambda_2 N_2 - \lambda_3 N_3 - N_3 \sigma_3 \phi = \beta \cdot \lambda_2 N_2 - \Lambda_3 N_3, \quad (13)$$
$$\Lambda_3 \equiv \lambda_3 + \sigma_3 \phi,$$

where β is the branching ratio (82.7 ± 0.3%¹⁾) of ^{242g}Am decaying to ²⁴²Cm. Then, the following solution can be obtained:

$$N_{3}(t) = \frac{\beta \cdot \lambda_{2} N_{0} \sigma_{g} \phi}{(\Lambda_{2} - \Lambda_{0})(\Lambda_{3} - \Lambda_{0})} \times (\exp(-\Lambda_{0}t) - \exp(-\Lambda_{3}t)) + \frac{\beta \cdot \lambda_{2} N_{0} \sigma_{g} \phi}{(\Lambda_{2} - \Lambda_{0})(\Lambda_{3} - \Lambda_{2})} \times (\exp(-\Lambda_{3}t) - \exp(-\Lambda_{2}t)).$$
(14)

The decay scheme of products after irradiation is illustrated in Fig. 7(b). When the time of the end of irradiation is taken on the standard of time, changes for the number of nuclei in the decay of 242g Am after irradiation can be given by the following equation:

$$N_2^*(t) = N_{20} \cdot \exp(-\lambda_2 t),$$
 (15)

where N_{20} is the number of nuclei of ^{242g}Am at the end time of irradiation, and is given by replacing *t* with t_{irr} in Eq. (12):

$$N_{20} \equiv \frac{N_0 \sigma_g \phi}{\Lambda_2 - \Lambda_0} (\exp(-\Lambda_0 t_{irr}) - \exp(-\Lambda_2 t_{irr})).$$
(16)

Similarly, the population from ²⁴²gAm to ²⁴²Cm is described by the following equation:

$$\frac{dN_3^*}{dt} = \beta \cdot \lambda_2 N_{20} \exp(-\lambda_2 t) - \lambda_3 N_3.$$
(17)

Then, the solution is derived as follows:

$$N_3^*(t) = \frac{\beta \cdot \lambda_2 N_{20}}{\lambda_3 - \lambda_2} \cdot (\exp(-\lambda_2 t) - \exp(-\lambda_3 t)) + N_{30} \cdot \exp(-\lambda_3 t),$$
(18)

where N_{30} is the number of nuclei of ²⁴²Cm at the end of irradiation, and given by replacing t with t_{irr} in Eq. (14), *i.e.*,

$$N_{30} = \frac{\beta \cdot \lambda_2 N_0 \sigma_g \phi}{(\Lambda_2 - \Lambda_0)(\Lambda_3 - \Lambda_0)} \times (\exp(-\Lambda_0 t_{irr}) - \exp(-\Lambda_3 t_{irr})) + \frac{\beta \cdot \lambda_2 N_0 \sigma_g \phi}{(\Lambda_2 - \Lambda_0)(\Lambda_3 - \Lambda_2)} \times (\exp(-\Lambda_3 t_{irr}) - \exp(-\Lambda_2 t_{irr})).$$
(19)

If the cooling time t_c is replaced with the time from the end of irradiation to the start of the measurement, the radioactivity A_3 at the beginning of the measurement can be given by the following equation:

without the Gd	Cm/Am yield ratio	Reaction rate $R_{\rm g} ~(\times 10^{-8}/{\rm s})$	with the Gd	Cm/Am ratio	Reaction rate $R'_{g} (\times 10^{-9}/\text{s})$
#1	4.144 ± 0.059	2.307 ± 0.035	#1	1.071 ± 0.013	5.926 ± 0.075
#2	4.106 ± 0.056	2.282 ± 0.033	#2	1.089 ± 0.012	6.027 ± 0.069
#3	4.138 ± 0.043	2.293 ± 0.026	#3	1.078 ± 0.009	5.968 ± 0.056
	w.a.	2.293 ± 0.019		w.a.	5.975 ± 0.043

Table 5 Experimental results of the Cm/Am yield ratio and the reaction rates

 Table 6
 Systematic errors due to the nuclear data used in this analysis

Nuclide	Item	Error (%)	Nuclide	Item	Error (%)
²⁴¹ Am	Half-life: $T_{1/2}$ Cross section: σ_r, σ_f	0.16 0.13	²⁴⁴ Cm	Half-life: $T_{1/2}$ Cross section: σ_r, σ_f	0.1 negligibly small
^{242m} Am	Half-life: $T_{1/2}$ Cross section: $\sigma_{\rm r}, \sigma_{\rm f}$	negligibly small	—	Branching ratio β^-	0.36
^{242g} Am	Half-life: $T_{1/2}$ Cross section: σ_r	negligibly small 0.05	—	Isomer transition probability: <i>IT</i>	negligibly small
²⁴³ Am	Half-life: $T_{1/2}$ Cross section: $\sigma_{\rm r}$	negligibly small		Irradiation time: $t_{\rm irr}$ Cooling time: $t_{\rm c}$	0.12 0.003

Total systematic error: 0.45(%)

$$A_{3} = \lambda_{3} N_{3}^{*}(t_{c}),$$

$$= \frac{\beta \cdot \lambda_{2} \lambda_{3} N_{20}}{\lambda_{3} - \lambda_{2}} \cdot (\exp(-\lambda_{2} t_{c}) - \exp(-\lambda_{3} t_{c}))$$

$$+ \lambda_{3} N_{30} \cdot \exp(-\lambda_{3} t_{c}).$$
(20)

When the α -ray yields originating from ²⁴¹Am and ²⁴²Cm are expressed with Y_0 and Y_3 , respectively, the ²⁴²Cm/ ²⁴¹Am activity ratio can be given by

$$\frac{Y_3}{Y_0} = \frac{\beta \cdot \lambda_2 \lambda_3 N_{20}(\exp(-\lambda_2 t_c) - \exp(-\lambda_3 t_c))}{(\lambda_3 - \lambda_2) \lambda_0 N_0 \cdot \exp(-\Lambda_0 t_{irr})} + \frac{\lambda_3 N_{30} \cdot \exp(-\lambda_3 t_c)}{\lambda_0 N_0 \cdot \exp(-\Lambda_0 t_{irr})}.$$
(21)

There is an advantage that the measuring time, dead time corrections, absolute efficiencies and a correction for a solid angle are all canceled due to the relative measurement. Substituting Eqs. (16) and (19) into Eq. (21), it is arranged with the reaction rate $R_g \equiv \sigma_g \phi$. One can obtain the following equation:

$$\begin{split} \frac{Y_3}{Y_0} &= R_g \cdot \frac{\beta \cdot \lambda_2 \lambda_3}{\lambda_0 (\lambda_3 - \lambda_2) (\Lambda_2 - \Lambda_0) \cdot \exp(-\Lambda_0 t_{irr})} \\ &\times (\exp(-\Lambda_0 t_{irr}) - \exp(-\Lambda_2 t_{irr})) \\ &\times (\exp(-\lambda_2 t_c) - \exp(-\lambda_3 t_c)) \\ &+ R_g \cdot \frac{\beta \cdot \lambda_2 \lambda_3}{\lambda_0 (\Lambda_2 - \Lambda_0) (\Lambda_3 - \Lambda_0) \cdot \exp(-\Lambda_0 t_{irr})} \\ &\times (\exp(-\Lambda_0 t_{irr}) - \exp(-\Lambda_3 t_{irr})) \cdot \exp(-\lambda_3 t_c) \\ &+ R_g \cdot \frac{\beta \cdot \lambda_2 \lambda_3}{\lambda_0 (\Lambda_2 - \Lambda_0) (\Lambda_3 - \Lambda_2) \cdot \exp(-\Lambda_0 t_{irr})} \\ &\times (\exp(-\Lambda_3 t_{irr}) - \exp(-\Lambda_2 t_{irr})) \cdot \exp(-\lambda_3 t_c). \end{split}$$

Thus, the reaction rate R_g can be calculated from the α -activity ratio with Eq. (22).

IV. Results and Discussion

From the α -activity ratios of 162-d ²⁴²Cm to 432-y ²⁴¹Am, as determined by the silicon surface barrier alpha spectrometer, the reaction rates R_g were obtained as listed in **Table 5**. The statistical error in the α -ray measurements was about 1%. The systematic errors resulting from the nuclear data used in this analysis were examined quantitatively as listed in **Table 6**. The total systematic error was found to be very small as 0.45% because of the following reasons: (1) the detection efficiency in the α -ray measurements was canceled; (2) the accuracy of the half-life data used in this analysis was very high; (3) the influences of the multiple neutron capture and fission reactions were negligible.

Solving Eqs. (4) and (5) with the information on the obtained reaction rates $R_{\rm g}$ and the neutron fluxes, one finds the thermal-neutron capture cross section $\sigma_{0,g}$ and the parameter s₀. Furthermore, the resonance integral $I_{0,g}$ was calculated with the parameter s_0 from Eqs. (3) and (9). For the 241 Am $(n,\gamma)^{242g}$ Am reaction, the thermal-neutron capture cross section $\sigma_{0,g}$ was obtained as 628 ± 22 b. The resonance integral $I_{0,g}$ was obtained as 3.5 ± 0.3 kb when the cutoff energy was 0.107 eV. The errors of the thermal-neutron capture cross section $\sigma_{0,g}$ and the resonance integral $I_{0,g}$ were estimated by the error propagation due to the errors of the reaction rates R_g and the neutron fluxes. The present results are summarized in Table 7 together with the evaluated values.^{15,18,21,22)} The present results are the cross sections for the formation of the ground state of ²⁴²Am. On the other hand, the evaluated values include the cross sections for the formation of the isomer and ground states of ²⁴²Am. Therefore, the present results cannot be simply compared with the evaluated values.^{15,21,22)} When the cross section producing the isomer state of ²⁴²Am is taken into account with the branching ratio (0.90 ± 0.09) obtained by Shinohara et

Table 7 Present results and the evaluated data

References	$\sigma_{0,g}$ (barn)	I _{0,g} (barn)	Cutoff energy (eV)	Parameter <i>s</i> ₀
Present work JENDL-3.3 ¹⁵⁾	628 ± 22 639.4*	$3.5 \pm 0.3 \text{ k}$ 1456*	0.107	5.21 ± 0.51
Maghabghab ¹⁸⁾ JEFF3.1 ²¹⁾ ENDF-VII.0 ²²⁾	533 ± 13 647.04* 620.84*	$\begin{array}{c} 1230 \pm 100 \\ 1526.4^* \end{array}$	0.5	

An asterisk(*) denotes the cross sections of the ${}^{241}Am(n,\gamma) {}^{242m+g}Am$ reaction.

al.,¹²⁾ the capture cross section $\sigma_{0,m+g}$ would be roughly estimated as about 690 b from the present result, and about 8% larger than the JENDL-3.3 evaluation (639.47 b¹⁵). The evaluation is probably done for the ²⁴¹Am cross section under the limitation of the total cross-section data (654.4 b). It seems that total cross section itself is underestimated in view of the present result.

As shown in Table 1, Hanna *et al.*⁵⁾ measured a cross section for pile neutrons, and obtained 568 ± 56.8 b for ²⁴¹Am leading to the production of ²⁴²Cm. Street *et al.*⁶⁾ reported a pile neutron capture cross section of 300 b for the ²⁴¹Am $(n,\gamma)^{242g}$ Am reaction, which was derived from an observed cross section of 200 b for the formation of ²⁴²Cm and 60% β^- branching of ^{242m}Am. Pomerance measured the thermal-neutron capture cross section of 625 ± 35 b based on the value of 98 b for gold in the reactor oscillator.⁷⁾ It should be noted that these neutron capture cross sections are for a pile neutron spectrum. Thus, these cross sections could conceivably vary with different reactors and irradiation positions.

The possible reason for the disagreement on the thermalneutron capture cross section among the data would be found in the fact that the ²⁴¹Am has two very strong resonances at 0.308 and 0.573 eV, which are at least partially covering the cutoff energy. The presence of these resonances affects the sample activities, and should be taken into account. Fioni et al.¹³ measured the capture cross section of ²⁴¹Am at the high-flux reactor of the Institute Laue-Langevin in Grenoble. They used the H9 irradiation tube providing thermal neutrons (only 2% of epithermal neutrons) so that their measurement was not necessary to consider the effects of the resonances of ²⁴¹Am. Maidana et al.¹⁴⁾ measured the thermalneutron cross section and resonance integral for the 241 Am $(n,\gamma)^{242g}$ Am reaction by the activation method at the IPEN 2 MW pool-type research reactor. They considered the effects from the resonances for sample activities by means of a Monte Carlo simulation. The reason why the results by Fioni and Maidana et al. are close to the present result may be due to their data treatments.

Figure 8 shows the dependence of the ²⁴¹Am resonance integral on the cutoff energy. The solid line plots the resonance integral as a function of the cutoff energy from the data of JENDL-3.3, which includes the contribution of ^{242g}Am. It is difficult to interpret the differences between reported values of $I_{0,g}$ shown in Fig. 8. Since Gavrilov *et al.*¹¹⁾ and Shinohara *et al.*¹²⁾ measured the resonance integrals at a 0.5 eV cutoff energy with a 1-mm-thick cadmium shield, it

Fig. 8 Dependences on cutoff energies for the resonance integral of ^{241}Am

seems that there is no problem with their results. One can conclude that the evaluation would be underestimated for the resonance integral $I_{0,g}$.

V. Conclusion

The thermal-neutron capture cross section and the resonance integral of the 241 Am $(n,\gamma)^{242g}$ Am reaction were measured by the activation method. With careful attention to the first resonance of ²⁴¹Am, the cutoff energy was taken as 0.107 eV with the Gd-coated capsule having appropriate thickness. The thermal-neutron capture cross section $\sigma_{0,g}$ was obtained as 628 ± 22 b on the basis of Westcott's convention. The present result became smaller than that obtained by previous measurements, because the influences of the resonances of ²⁴¹Am were eliminated with the Gdcoated capsule. Thus, we conclude that part of the previous measurements gave an overestimation to the thermal-neutron capture cross section. The resonance integral $I_{0,g}$ was obtained as 3.5 ± 0.3 kb. As a matter of course, it became much larger than the past data because of the 0.107 eV cutoff energy.

Acknowledgments

The authors would like to appreciate H. Kodaka, K. Miyata and J. Takada of the Research Reactor Institute of Kyoto University for their cooperation. One of the authors

(S.N.) is grateful to K. Furutaka for valuable information and suggestions.

This work has been carried out in part under the Visiting Researcher's Program of the Research Reactor Institute, Kyoto University.

References

- R. B. Firestone, V. S. Shirley, C. M. Baglin, S. Y. F. Chu, J. Zipkin, *Table of Isotopes*, 8th edition, John Wiley & Sons, New York, (1995).
- H. Takano, T. Ikegami, "Actinides on R&D of partitioning and transmutation in Japan," Actinide and Fission Product Partitioning and Transmutation, Seventh Information Exchange Meeting, Jeju, Republic of Korea, Oct. 14–16, 2002, 23–35, (2002).
- N. Kocherov, P. K. McLaughlin (Eds.), World Request List for Nuclear Data, INDC(SEC)-104 (1993).
- G. T. Seaborg, W. M. Manning, *Capture Cross Section of Americium-241 for Pile Neutrons*, Chicago University Metallurgical Labs Reports, No. 3471, 4 (1946).
- G. C. Hanna, B. G. Harvey, N. Moss, "The neutron capture cross section of Am²⁴¹," *Phys. Rev.*, 81, 486 (1951).
- K. Street, Jr., A. Ghiorso, S. G. Thompson, "Slow neutron fission of Am²⁴², Am^{242m}, and Am^{243*}," *Phys. Rev.*, 85, 135 (1952).
- 7) H. Pomerance, ORNL-1879, 50 (1955).
- 8) R. A. Deal, R. P. Schuman, WASH-1053, 76 (1964).
- 9) M. A. Bak, A. S. Krivokhatskii, K. A. Petrzhak, Yu. G. Petrov, Yu. F. Romanov, E. A. Shlyamin, "Cross sections and resonance integrals for capture and fission in long-lived americium isotopes," *Sov. At. Energy*, 23, 1059 (1967).
- R. M. Harbour, K. W. MacMurdo, F. J. McCrosson, "Thermalneutron capture cross sections and capture resonance integrals of americium-241," *Nucl. Sci. Eng.*, 50, 364 (1973).
- V. D. Gavrilov, V. A. Goncharov, V. P. Smirnov, "Thermal cross sections and resonance integrals of fission and capture of ²⁴¹Am, ²⁴³Am, ²⁴⁵Cm, ²⁴⁹Bk, and ²⁴⁹Cf," *Sov. At. Energy*, **41**[3], 808 (1976).
- 12) N. Shinohara, Y. Hatsukawa, K. Hata, N. Kohno, "Radiochemical determination of neutron capture cross sections of ²⁴¹Am," J. Nucl. Sci. Technol., **34**[7], 613 (1997).
- 13) G. Fioni, M. Cribier, F. Marie *et al.*, "Incineration of 241Am induced by thermal neutrons," *Nucl. Phys. A*, 693, 546 (2001).

- 14) N. L. Maidana, M. S. Dias, M. F. Koskinas, "Measurement of the thermal neutron capture cross section and resonance integral of Am-241," *Radiochim. Acta.*, 89, 419 (2001).
- 15) K. Shibata, T. Kawano, T. Nakagawa, O. Iwamoto, J. Katakura, T. Fukahori, S. Chiba, A. Hasegawa, T. Murata, H. Matsunobu, T. Ohsawa, Y. Nakajima, T. Yoshida, A. Zukeran, M. Kawai, M. Baba, M. Ishikawa, T. Asami, T. Watanabe, Y. Watanabe, M. Igashira, N. Yamamuro, H. Kitazawa, N. Yamano, H. Takano, "Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3," *J. Nucl. Sci. Technol.*, **39**, 1125 (2002).
- 16) T. Katoh, S. Nakamura, K. Furutaka, H. Harada, K. Fujiwara, T. Fujii, H. Yamana, "Measurement of thermal neutron capture cross section and resonance integral of the $^{237}Np(n,\gamma)^{238}Np$ reaction," *J. Nucl. Sci. Technol.*, **40**, 559 (2003).
- M. Ohta, S. Nakamura, H. Harada, T. Fujii, H. Yamana, "Measurement of effective capture cross section of americium-243 for thermal neutrons," *J. Nucl. Sci. Technol.*, 43, 1441 (2006).
- S. F. Mughabghab, M. Divadeenam, N. E. Holden, *Neutron Cross Section*, Academic Press, New York, vols. 1 and 2, (1981).
- 19) S. F. Mughabghab, *Thermal Neutron Capture Cross Sections, Resonance Integrals, and g-factors*, INDC(NDS)-440, (2003).
- 20) C. H. Westcott, W. H. Walker, T. K. Alexander, *Proc. 2nd Int. Conf. Peaceful Use of Atomic Energy, Geneva*, United Nations, New York, 16, 70 (1958).
- A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henrikson, Y. Rugama (Eds.), *The JEFF-3.1 Nuclear Data Library*, JEFF Report 21 (2006).
- M. B. Chadwick, P. Oblozinsky, M. Herman, N. M. Greene, R. D. McKnight, D. L. Smith, P. G. Young, R. E. MacFarlane, G. M. Hale, S. C. Frankle, A. C. Kahler, T. Kawano, R. C. Little, D. G. Madland, P. Moller, R. D. Mosteller, P. R. Page, P. Talou, H. Trellue, M. C. White, W. B. Wilson, R. Arcilla, C. L. Dunford, S. F. Mughabghab, B. Pritychenko, D. Rochman, A. A. Sonzogni, C. R. Lubitz, T. H. Trumbull, J. P. Weinman, D. A. Brown, D. E. Cullen, D. P. Heinrichs, D. P. McNabb, H. Derrien, M. E. Dunn, N. M. Larson, L. C. Leal, A. D. Carlson, R. C. Block, J. B. Briggs, E. T. Cheng, H. C. Huria, M. L. Zerkle, K. S. Kozier, A. Courcelle, V. Pronyaev, S. C. van der Marck, "ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology," *Nucl. Data Sheets*, **102**, 2931 (2006).