11 research outputs found

    Ring-Opening Polymerization of THF by Aryloxo-Modified (Imido)vanadium(V)-alkyl Complexes and Ring-Opening Metathesis Polymerization by Highly Active V(CHSiMe<sub>3</sub>)(NAd)(OC<sub>6</sub>F<sub>5</sub>)(PMe<sub>3</sub>)<sub>2</sub>

    No full text
    Ring-opening polymerizations of THF using V­(NR)­(CH<sub>2</sub>SiMe<sub>3</sub>)­(OAr)<sub>2</sub> [R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, 1-adamantyl (Ad), Ph; Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, C<sub>6</sub>F<sub>5</sub>] proceeded in a living manner in the presence of [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], affording high molecular weight polymers with low PDI (<i>M</i><sub>w</sub>/<i>M</i><sub>n</sub>) values: the observed activity (initiation efficiency) was affected by the arylimido and aryloxo ligands employed. A new vanadium­(V)-alkylidene, V­(CHSiMe<sub>3</sub>)­(NAd)­(OC<sub>6</sub>F<sub>5</sub>)­(PMe<sub>3</sub>)<sub>2</sub>, prepared from V­(NAd)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(OC<sub>6</sub>F<sub>5</sub>) by α-hydrogen elimination in <i>n</i>-hexane in the presence of PMe<sub>3</sub> at 25 °C, exhibited remarkable catalytic activity for ring-opening metathesis polymerization of norbornene: the activity at 25 °C was higher than those by the reported vanadium­(V)-alkylidenes and ordinary Mo­(CHCMe<sub>2</sub>Ph)­(N-2,6-<sup><i>i</i></sup>Pr<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>)­(O<sup><i>t</i></sup>Bu)<sub>2</sub>

    Effect of Terminal Aryloxo Ligands in Ethylene Polymerization Using Titanatranes of the Type, [Ti(OAr){(O-2,4‑R<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)‑6-CH<sub>2</sub>}<sub>3</sub>N]: Synthesis and Structural Analysis of the Heterobimetallic Complexes of Titanatranes with AlMe<sub>3</sub>

    No full text
    Effects of aryloxo terminal ligands and AlMe<sub>3</sub> in ethylene polymerization using a series of Ti­(OAr)­[{(O-2,4-R<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)-6-CH<sub>2</sub>}<sub>3</sub>N] [R = Me (<b>1</b>), <sup><i>t</i></sup>Bu (<b>2</b>); Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>a</b>), 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>b</b>), 2,6-Ph<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>c</b>), 2,6-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>d</b>), C<sub>6</sub>F<sub>5</sub> (<b>e</b>)] (<b>1a</b>–<b>1e</b>, <b>2d</b>,<b>2e</b>) in the presence of methylaluminoxane (MAO) have been explored. Reactions of <b>1b</b>,<b>1d</b>,<b>1e</b>, which showed an increase in the activity upon addition of a small amount of AlMe<sub>3</sub>, with 1.0 equiv of AlMe<sub>3</sub> afforded heterobimetallic Ti–Al complexes, TiMe­(O-2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­[(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­(μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­(Me<sub>2</sub>Al-μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­N] (<b>3b</b>) and [TiMe­{(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)<sub>2</sub>(μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­N}]­[Me<sub>2</sub>Al­(μ<sub>2</sub>-OAr)] [Ar = 2,6-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>3d</b>), C<sub>6</sub>F<sub>5</sub> (<b>3e</b>)], in moderate yields, and their structures were determined by X-ray crystallography. In contrast, the similar reaction of <b>1a</b> (which showed a decrease in the activity upon addition of AlMe<sub>3</sub>) yielded [Al­(μ<sub>2</sub>-O-2,6-C<sub>6</sub>H<sub>3</sub>)­Me<sub>2</sub>]<sub>2</sub> and TiMe­[{(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)-6-CH<sub>2</sub>}<sub>3</sub>N] as isolated forms: [Al­(μ<sub>2</sub>-OC<sub>6</sub>F<sub>5</sub>)­Me<sub>2</sub>]<sub>2</sub> was isolated from the mixture in the reactions of <b>1c</b>,<b>2d</b>,<b>2e</b>. The isolated heterobimetallic complexes (<b>3b</b>,<b>3d</b>,<b>3e</b>) exhibited high catalytic activities for ethylene polymerization in the presence of MAO, suggesting that these bimetallic species play a role in this catalysis

    Effect of Terminal Aryloxo Ligands in Ethylene Polymerization Using Titanatranes of the Type, [Ti(OAr){(O-2,4‑R<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)‑6-CH<sub>2</sub>}<sub>3</sub>N]: Synthesis and Structural Analysis of the Heterobimetallic Complexes of Titanatranes with AlMe<sub>3</sub>

    No full text
    Effects of aryloxo terminal ligands and AlMe<sub>3</sub> in ethylene polymerization using a series of Ti­(OAr)­[{(O-2,4-R<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)-6-CH<sub>2</sub>}<sub>3</sub>N] [R = Me (<b>1</b>), <sup><i>t</i></sup>Bu (<b>2</b>); Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>a</b>), 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>b</b>), 2,6-Ph<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>c</b>), 2,6-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>d</b>), C<sub>6</sub>F<sub>5</sub> (<b>e</b>)] (<b>1a</b>–<b>1e</b>, <b>2d</b>,<b>2e</b>) in the presence of methylaluminoxane (MAO) have been explored. Reactions of <b>1b</b>,<b>1d</b>,<b>1e</b>, which showed an increase in the activity upon addition of a small amount of AlMe<sub>3</sub>, with 1.0 equiv of AlMe<sub>3</sub> afforded heterobimetallic Ti–Al complexes, TiMe­(O-2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­[(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­(μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­(Me<sub>2</sub>Al-μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­N] (<b>3b</b>) and [TiMe­{(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)<sub>2</sub>(μ<sub>2</sub>-O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)­N}]­[Me<sub>2</sub>Al­(μ<sub>2</sub>-OAr)] [Ar = 2,6-F<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>3d</b>), C<sub>6</sub>F<sub>5</sub> (<b>3e</b>)], in moderate yields, and their structures were determined by X-ray crystallography. In contrast, the similar reaction of <b>1a</b> (which showed a decrease in the activity upon addition of AlMe<sub>3</sub>) yielded [Al­(μ<sub>2</sub>-O-2,6-C<sub>6</sub>H<sub>3</sub>)­Me<sub>2</sub>]<sub>2</sub> and TiMe­[{(O-2,4-Me<sub>2</sub>C<sub>6</sub>H<sub>2</sub>)-6-CH<sub>2</sub>}<sub>3</sub>N] as isolated forms: [Al­(μ<sub>2</sub>-OC<sub>6</sub>F<sub>5</sub>)­Me<sub>2</sub>]<sub>2</sub> was isolated from the mixture in the reactions of <b>1c</b>,<b>2d</b>,<b>2e</b>. The isolated heterobimetallic complexes (<b>3b</b>,<b>3d</b>,<b>3e</b>) exhibited high catalytic activities for ethylene polymerization in the presence of MAO, suggesting that these bimetallic species play a role in this catalysis

    Synthesis and Structural Analysis of (Imido)Vanadium(V) Complexes Containing Chelate (Anilido)Methyl-imine Ligands: Ligand Effect in Ethylene Dimerization

    No full text
    A series of (imido)vanadium dichlorido complexes containing chelate anionic donor ligands of the type, VCl<sub>2</sub>(L)­(NR) [R = 1-adamantyl (Ad), L = 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>9</sub>H<sub>6</sub>N) (<b>2</b>), 8-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>9</sub>H<sub>6</sub>N) (<b>3</b>); L = 2-(2,6-R′<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N), R = 2-MeC<sub>6</sub>H<sub>4</sub>, R′ = Me (<b>4a</b>), <sup><i>i</i></sup>Pr (<b>4b</b>); L = 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N), R = 4-MeC<sub>6</sub>H<sub>4</sub> (<b>5</b>), 3,5-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>6</b>)], have been prepared and identified. The reactions with ethylene by <b>2</b>,<b>3</b> in the presence of methylaluminoxane (MAO) afforded a mixture of high molecular weight polyethylene and oligomers. Reactions with ethylene by VCl<sub>2</sub>[2-(2,6-R′<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)]­(NAd) (<b>1a,b</b>), <b>4</b>–<b>6</b> afforded 1-butene with high selectivities (>92%), and the activities by <b>4a</b>,<b>b</b> are at the same level as those in <b>1a</b>,<b>b</b>. The activities by <b>5</b>,<b>6</b> were lower than <b>4a</b>,<b>b</b> and were at the same level of that by VCl<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)]­(NPh). These results thus suggest that both the chelate anionic donor and the imido ligands play a role for both the activity and the selectivity

    Synthesis and Structural Analysis of (Imido)Vanadium(V) Complexes Containing Chelate (Anilido)Methyl-imine Ligands: Ligand Effect in Ethylene Dimerization

    No full text
    A series of (imido)vanadium dichlorido complexes containing chelate anionic donor ligands of the type, VCl<sub>2</sub>(L)­(NR) [R = 1-adamantyl (Ad), L = 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>9</sub>H<sub>6</sub>N) (<b>2</b>), 8-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>9</sub>H<sub>6</sub>N) (<b>3</b>); L = 2-(2,6-R′<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N), R = 2-MeC<sub>6</sub>H<sub>4</sub>, R′ = Me (<b>4a</b>), <sup><i>i</i></sup>Pr (<b>4b</b>); L = 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N), R = 4-MeC<sub>6</sub>H<sub>4</sub> (<b>5</b>), 3,5-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>6</b>)], have been prepared and identified. The reactions with ethylene by <b>2</b>,<b>3</b> in the presence of methylaluminoxane (MAO) afforded a mixture of high molecular weight polyethylene and oligomers. Reactions with ethylene by VCl<sub>2</sub>[2-(2,6-R′<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)]­(NAd) (<b>1a,b</b>), <b>4</b>–<b>6</b> afforded 1-butene with high selectivities (>92%), and the activities by <b>4a</b>,<b>b</b> are at the same level as those in <b>1a</b>,<b>b</b>. The activities by <b>5</b>,<b>6</b> were lower than <b>4a</b>,<b>b</b> and were at the same level of that by VCl<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)]­(NPh). These results thus suggest that both the chelate anionic donor and the imido ligands play a role for both the activity and the selectivity

    Electrochemistry, Charge Transfer Properties, and Theoretical Investigation of a Macrocyclic Boronate Dimer of 1′,1‴-Biferrocenediboronic Acid and Related Ferrocenyl Boronate Complexes

    No full text
    The target compound of this study is the macrocyclic tetraferrocenyl boronate complex <b>CP</b><sub><b>2</b></sub><b>C</b>, which has two types of metal connections (i.e., Fe<sup>II</sup>–CpCp–Fe<sup>II</sup> and Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup> (Cp = cyclopentadienyl)) in the finite structure (<b>C</b> = 1′,1‴-biferrocenediboronic acid, <b>P</b> = pentaerythritol). The electrochemical behavior of <b>CP</b><sub><b>2</b></sub><b>C</b> in dichloromethane was compared with that of the related boronate complexes <b>APA</b> and <b>BP</b><sub><b>2</b></sub><b>B</b>, having Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup>, and <b>Cester</b>, having Fe<sup>II</sup>–CpCp–Fe<sup>II</sup>. The effects of the counteranion of the supporting electrolyte on potential splitting revealed that <b>CP</b><sub><b>2</b></sub><b>C</b> exhibits an intrabiferrocenyl through-bond interaction through the CpCp ligand, as well as an interbiferrocenyl through-space interaction across the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand. Chemical oxidation of <b>CP</b><sub><b>2</b></sub><b>C</b> with AgSbF<sub>6</sub> produced the one- and two-electron-oxidized species <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>+</b></sup> and <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>, which exhibit intervalence charge transfer transition bands through the CpCp ligand in the near-infrared region, giving one and two valence isomers, respectively. DFT calculations revealed the charge distribution of <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>; the positive charges are localized on each biferrocenium unit, especially on the longer diagonal, to minimize the electrostatic repulsion over the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand

    Electrochemistry, Charge Transfer Properties, and Theoretical Investigation of a Macrocyclic Boronate Dimer of 1′,1‴-Biferrocenediboronic Acid and Related Ferrocenyl Boronate Complexes

    No full text
    The target compound of this study is the macrocyclic tetraferrocenyl boronate complex <b>CP</b><sub><b>2</b></sub><b>C</b>, which has two types of metal connections (i.e., Fe<sup>II</sup>–CpCp–Fe<sup>II</sup> and Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup> (Cp = cyclopentadienyl)) in the finite structure (<b>C</b> = 1′,1‴-biferrocenediboronic acid, <b>P</b> = pentaerythritol). The electrochemical behavior of <b>CP</b><sub><b>2</b></sub><b>C</b> in dichloromethane was compared with that of the related boronate complexes <b>APA</b> and <b>BP</b><sub><b>2</b></sub><b>B</b>, having Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup>, and <b>Cester</b>, having Fe<sup>II</sup>–CpCp–Fe<sup>II</sup>. The effects of the counteranion of the supporting electrolyte on potential splitting revealed that <b>CP</b><sub><b>2</b></sub><b>C</b> exhibits an intrabiferrocenyl through-bond interaction through the CpCp ligand, as well as an interbiferrocenyl through-space interaction across the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand. Chemical oxidation of <b>CP</b><sub><b>2</b></sub><b>C</b> with AgSbF<sub>6</sub> produced the one- and two-electron-oxidized species <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>+</b></sup> and <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>, which exhibit intervalence charge transfer transition bands through the CpCp ligand in the near-infrared region, giving one and two valence isomers, respectively. DFT calculations revealed the charge distribution of <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>; the positive charges are localized on each biferrocenium unit, especially on the longer diagonal, to minimize the electrostatic repulsion over the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand

    Electrochemistry, Charge Transfer Properties, and Theoretical Investigation of a Macrocyclic Boronate Dimer of 1′,1‴-Biferrocenediboronic Acid and Related Ferrocenyl Boronate Complexes

    No full text
    The target compound of this study is the macrocyclic tetraferrocenyl boronate complex <b>CP</b><sub><b>2</b></sub><b>C</b>, which has two types of metal connections (i.e., Fe<sup>II</sup>–CpCp–Fe<sup>II</sup> and Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup> (Cp = cyclopentadienyl)) in the finite structure (<b>C</b> = 1′,1‴-biferrocenediboronic acid, <b>P</b> = pentaerythritol). The electrochemical behavior of <b>CP</b><sub><b>2</b></sub><b>C</b> in dichloromethane was compared with that of the related boronate complexes <b>APA</b> and <b>BP</b><sub><b>2</b></sub><b>B</b>, having Fe<sup>II</sup>–CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp–Fe<sup>II</sup>, and <b>Cester</b>, having Fe<sup>II</sup>–CpCp–Fe<sup>II</sup>. The effects of the counteranion of the supporting electrolyte on potential splitting revealed that <b>CP</b><sub><b>2</b></sub><b>C</b> exhibits an intrabiferrocenyl through-bond interaction through the CpCp ligand, as well as an interbiferrocenyl through-space interaction across the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand. Chemical oxidation of <b>CP</b><sub><b>2</b></sub><b>C</b> with AgSbF<sub>6</sub> produced the one- and two-electron-oxidized species <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>+</b></sup> and <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>, which exhibit intervalence charge transfer transition bands through the CpCp ligand in the near-infrared region, giving one and two valence isomers, respectively. DFT calculations revealed the charge distribution of <b>CP</b><sub><b>2</b></sub><b>C</b><sup><b>2+</b></sup>; the positive charges are localized on each biferrocenium unit, especially on the longer diagonal, to minimize the electrostatic repulsion over the CpBO<sub>2</sub>C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>BCp ligand

    Conglomerate, Racemate, and Achiral Crystals of Polymetallic Europium(III) Compounds of Bis- or Tris-β-diketonate Ligands and Circularly Polarized Luminescence Study

    No full text
    This work reports (a) conglomerate and racemic crystal structures of [(Δ,Δ,Δ,Δ,Δ,Δ)- or/and (Λ,Λ,Λ,Λ,Λ,Λ)-EuIII6(TTP)8(OH2)6Na4]n coordination polymers, (b) racemic crystal structures of (Δ,Δ,Δ,Δ)-/(Λ,Λ,Λ,Λ)-EuIII4(TTP)4(bipy)4(MEK)2(OH2)2 tetrahedral clusters, and (c) the achiral crystal structure of the [EuIII2(BTP)4(OH2)2Na2]n coordination polymer (where BTP = dianionic bis-β-diketonate, TTP = trianionic tris-β-diketonate, and bipy = 2,2′-bipyridine). The screw coordination arrangement of the TTP ligand has led to the formation of homoconfigurational racemic EuIII products. The conglomerate crystallization of [EuIII6(TTP)8(OH2)6Na4]n appears to be caused by the presence of the sodium, Na+ counterions, and interactions between oxygen atoms and the trifluoromethyl unit of the TTP ligand and Na+ ions. All the EuIII compounds exhibit characteristic red luminescence (5D0 → 7FJ, J = 0–4) in solution or in the solid crystalline state. Circularly polarized luminescence (CPL) was observed in the chiral EuIII6(TTP)8(OH2)6Na4]n species, displaying a |glum| value in the range of 0.15 to 0.68 at the 5D0 → 7F1 emission band. Subtle changes of the [EuIII6(TTP)8(OH2)6Na4]n structure which may be due to selection of twinned crystals or crystals that do not correspond to a perfect spontaneous resolution, are considered to be responsible for the variation in the observed CPL values

    Excited State Engineering in Ag<sub>29</sub> Nanocluster through Peripheral Modification with Silver(I) Complexes for Bright Near-Infrared Photoluminescence

    No full text
    The optical property of an ionic metal nanocluster (NC) is affected by the ionic interaction with counter ions. Here, we report that the modification of trianionic [Ag29(BDT)12(TPP)4]3– NC (BDT: 1.3-benzenedithiol; TPP: triphenylphosphine) with silver(I) complexes led to the intense photoluminescence (PL) in the near-infrared (NIR) region. The binding of silver(I) complexes to the peripheral region of Ag29 NC is confirmed by the single-crystal X-ray diffraction (SCXRD) measurement, which is further supported by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. The change of excited-state dynamics by the binding of silver(I) complexes is discussed based on the results of a transient absorption study as well as temperature-dependent PL spectra and PL lifetime measurements. The modification of Ag29 NCs with cationic silver(I) complexes is considered to give rise to a triplet excited state responsible for the intense NIR PL. These findings also afford important insights into the origin of the PL mechanism as well as the possible light-driven motion in Ag29-based NCs
    corecore