14 research outputs found
DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death.
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death
Autophagy and signaling: their role in cell survival and cell death.
Macroautophagy is a vacuolar, self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by the lysosome. The discovery of the ATG genes has provided key information about the formation of the autophagosome, and about the role of macroautophagy in allowing cells to survive during nutrient depletion and/or in the absence of growth factors. Two connected signaling pathways encompassing class-I phosphatidylinositol 3-kinase and (mammalian) target of rapamycin play a central role in controlling macroautophagy in response to starvation. However, a considerable body of literature reports that macroautophagy is also a cell death mechanism that can occur either in the absence of detectable signs of apoptosis (via autophagic cell death) or concomitantly with apoptosis. Macroautophagy is activated by signaling pathways that also control apoptosis. The aim of this review is to discuss the signaling pathways that control macroautophagy during cell survival and cell death