435 research outputs found
Cellular Automata and Ultra-Discrete Painlev\'e Equations
Starting from integrable cellular automata we present a novel form of
Painlev\'e equations. These equations are discrete in both the independent
variable and the dependent one. We show that they capture the essence of the
behavior of the Painlev\'e equations organizing themselves into a coalescence
cascade and possessing special solutions. A necessary condition for the
integrability of cellular automata is also presented.Comment: 8 pages, plainTeX, 2 figure
Conditioning bounds for traveltime tomography in layered media
This paper revisits the problem of recovering a smooth, isotropic, layered
wave speed profile from surface traveltime information. While it is classic
knowledge that the diving (refracted) rays classically determine the wave speed
in a weakly well-posed fashion via the Abel transform, we show in this paper
that traveltimes of reflected rays do not contain enough information to recover
the medium in a well-posed manner, regardless of the discretization. The
counterpart of the Abel transform in the case of reflected rays is a Fredholm
kernel of the first kind which is shown to have singular values that decay at
least root-exponentially. Kinematically equivalent media are characterized in
terms of a sequence of matching moments. This severe conditioning issue comes
on top of the well-known rearrangement ambiguity due to low velocity zones.
Numerical experiments in an ideal scenario show that a waveform-based model
inversion code fits data accurately while converging to the wrong wave speed
profile
The smallest eigenvalue of Hankel matrices
Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive
measure with moments of any order. We study the large N behaviour of the
smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential
decay to zero for any measure with compact support. For general determinate
moment problems the decay to 0 of lambda_N can be arbitrarily slow or
arbitrarily fast. In the indeterminate case, where lambda_N is known to be
bounded below by a positive constant, we prove that the limit of the n'th
smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity
with n. The special case of the Stieltjes-Wigert polynomials is discussed
Linked-cluster expansion for the Green\u27s function of the infinite-U Hubbard model
We implement a highly efficient strong-coupling expansion for the Green\u27s function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green\u27s function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the order of, the hopping amplitude. We also discuss several different approaches for obtaining the spectral functions through analytic continuation of the imaginary frequency Green\u27s function, and show results for the system near half filling. We benchmark our results for the equation of state against those obtained from a numerical linked-cluster expansion carried out to the eleventh order
Vector Continued Fractions using a Generalised Inverse
A real vector space combined with an inverse for vectors is sufficient to
define a vector continued fraction whose parameters consist of vector shifts
and changes of scale. The choice of sign for different components of the vector
inverse permits construction of vector analogues of the Jacobi continued
fraction. These vector Jacobi fractions are related to vector and scalar-valued
polynomial functions of the vectors, which satisfy recurrence relations similar
to those of orthogonal polynomials. The vector Jacobi fraction has strong
convergence properties which are demonstrated analytically, and illustrated
numerically.Comment: Published form - minor change
A Convergent Method for Calculating the Properties of Many Interacting Electrons
A method is presented for calculating binding energies and other properties
of extended interacting systems using the projected density of transitions
(PDoT) which is the probability distribution for transitions of different
energies induced by a given localized operator, the operator on which the
transitions are projected. It is shown that the transition contributing to the
PDoT at each energy is the one which disturbs the system least, and so, by
projecting on appropriate operators, the binding energies of equilibrium
electronic states and the energies of their elementary excitations can be
calculated. The PDoT may be expanded as a continued fraction by the recursion
method, and as in other cases the continued fraction converges exponentially
with the number of arithmetic operations, independent of the size of the
system, in contrast to other numerical methods for which the number of
operations increases with system size to maintain a given accuracy. These
properties are illustrated with a calculation of the binding energies and
zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain,
which is compared with analytic results for this system and extrapolations from
finite rings of spins.Comment: 30 pages, 4 figures, corrected pd
Two-band random matrices
Spectral correlations in unitary invariant, non-Gaussian ensembles of large
random matrices possessing an eigenvalue gap are studied within the framework
of the orthogonal polynomial technique. Both local and global characteristics
of spectra are directly reconstructed from the recurrence equation for
orthogonal polynomials associated with a given random matrix ensemble. It is
established that an eigenvalue gap does not affect the local eigenvalue
correlations which follow the universal sine and the universal multicritical
laws in the bulk and soft-edge scaling limits, respectively. By contrast,
global smoothed eigenvalue correlations do reflect the presence of a gap, and
are shown to satisfy a new universal law exhibiting a sharp dependence on the
odd/even dimension of random matrices whose spectra are bounded. In the case of
unbounded spectrum, the corresponding universal `density-density' correlator is
conjectured to be generic for chaotic systems with a forbidden gap and broken
time reversal symmetry.Comment: 12 pages (latex), references added, discussion enlarge
Generating GHZ state in 2m-qubit spin network
We consider a pure 2m-qubit initial state to evolve under a particular
quantum me- chanical spin Hamiltonian, which can be written in terms of the
adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques
such as spectral dis- tribution and stratification associated with the graphs,
employed in [1, 2], a maximally entangled GHZ state is generated between the
antipodes of the network. In fact, an explicit formula is given for the
suitable coupling strengths of the hamiltonian, so that a maximally entangled
state can be generated between antipodes of the network. By using some known
multipartite entanglement measures, the amount of the entanglement of the final
evolved state is calculated, and finally two examples of four qubit and six
qubit states are considered in details.Comment: 22 page
Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory
The method of the quantum probability theory only requires simple structural
data of graph and allows us to avoid a heavy combinational argument often
necessary to obtain full description of spectrum of the adjacency matrix. In
the present paper, by using the idea of calculation of the probability
amplitudes for continuous-time quantum walk in terms of the quantum probability
theory, we investigate quantum central limit theorem for continuous-time
quantum walks on odd graphs.Comment: 19 page, 1 figure
Evaluation of effective resistances in pseudo-distance-regular resistor networks
In Refs.[1] and [2], calculation of effective resistances on distance-regular
networks was investigated, where in the first paper, the calculation was based
on the stratification of the network and Stieltjes function associated with the
network, whereas in the latter one a recursive formula for effective
resistances was given based on the Christoffel-Darboux identity. In this paper,
evaluation of effective resistances on more general networks called
pseudo-distance-regular networks [21] or QD type networks \cite{obata} is
investigated, where we use the stratification of these networks and show that
the effective resistances between a given node such as and all of the
nodes belonging to the same stratum with respect to
(, belonging to the -th stratum with respect
to the ) are the same. Then, based on the spectral techniques, an
analytical formula for effective resistances such that
(those nodes , of
the network such that the network is symmetric with respect to them) is given
in terms of the first and second orthogonal polynomials associated with the
network, where is the pseudo-inverse of the Laplacian of the network.
From the fact that in distance-regular networks,
is satisfied for all nodes
of the network, the effective resistances
for ( is diameter of the network which
is the same as the number of strata) are calculated directly, by using the
given formula.Comment: 30 pages, 7 figure
- …